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A table for the true solar longitude
in the Jami® Zij

Benno van Dalen

In this article I analyse a table that turns out to be related to a table investigated by Prof.
E.S. Kennedy in the Festschrift for Willy Hartner (1977). The main part of this article is
a reworked version of Section 2.6.3 of my doctoral thesis (van Dalen 1993 in the
Bibliography).

Between the eighth and fifteenth centuries Islamic astronomers compiled more
than 200 different astronomical handbooks, known by the name of zij. Most of
these zijes contained explanatory text and large sets of tables of complicated
mathematical functions, by means of which the positions of the sun, moon and
planets could be accurately predicted.! The Islamic astronomers mostly based their
zijes on Ptolemy’s planetary models, but they calculated the tables anew, using
more accurate methods of computation and more accurate values of the underlying
parameters. In some cases the actual parameter values had changed in the course
of time; in other cases the determination of the parameters had not been accurate
enough to ascertain correct planetary positions over periods of centuries.

Many of the extant manuscripts of zijes contain a mixture of material from
various sources. Since these sources are not always explicitly mentioned, it is often
difficult to determine the origin of tables in zijes. We can assume that certain
mathematical properties of a table, such as the method of computation and the
underlying parameter values, are typical for the astronomer who calculated the
table. Thus we may be able to identify the origin of a table by investigating its
mathematical properties. Usually the tabular headings and the explanatory text in
zijes provide little information about the method of computation and the underlying
parameter values of the tables. Therefore such information must be extracted from
the tabular values themselves. In order to determine the unknown parameter values
as reliably as possible and to find important details of the methods of computation,
the use of advanced mathematical and statistical methods turns out to be both
essential and very effective, as is shown convincingly in van Dalen 1993 and in Van
Brummelen 1993.

In this article I will show how mathematical and statistical methods can be used
to determine the tabulated function, the underlying parameter values and the author
of a table about which no textual information is available. In the analysis of the
table I have as much as possible left out the statistical details. A summary of the

1  An overview of all zijes known in 1956 and of the types of tables that occur in zijes can be
found in Kennedy 1956. '
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statistical methods used can be found in the Appendix at the end of this article; for
more extensive explanations the reader is referred to my doctoral thesis.

Abu’l-Hasan Kushyar ibn Labban ibn Bashahri al-Jili worked as an
astronomer in Baghdad around the year 1000. The attribute al-Jili indicates that
Kiishyar was a native of the region Jilan in northern Iran. Kushyar’s main
achievements were in the fields of arithmetic, trigonometry and astronomy. He
wrote a work "The Elements of Hindu Reckoning" about sexagesimal arithmetic
and computed extensive trigonometric tables. In his astronomical works Kushyar
made use of the parameters of al-Battani (c. 900) instead of making his own
observations.?

It is unclear whether Kiishyar wrote one or two astronomical handbooks. In
"The Book of the Astrolabe" he mentions the Jami® Zij ("Comprehensive
Astronomical Tables") and the Baligh Zij ("Extensive Astronomical Tables") as
two different works. Kennedy suggests that the Baligh Zij is an abridged version
of the Jami®.®> I made a cursory analysis of the tables in four manuscripts of
Kiishyar’s zij(es): Istanbul Fatih 3418, Berlin Ahlwardt 5751, Leiden Or. 8 (1054),
and Cairo Dar al-Kutub Miqat 188/2.# The oldest of these manuscripts, Fatih
3418, is entitled "The Book of the Jami® Zij" and is divided into four treatises
containing instructions, tables, explanations and proofs respectively. The same
division is found in the Berlin and Leiden manuscripts, although the third and
fourth treatises are not actually present in the Berlin manuscript. From the given
tables of contents and from the coherence of the material in the Istanbul, Berlin and
Leiden manuscripts, it can be concluded that, except for the appended tables
described below, both explanatory text and tables in the three manuscripts were part
of the original zij written by Kiuishyar.’ The Cairo manuscript contains only a
number of Kushyar’s tables.

My analysis revealed that all four manuscripts contain essentially the same set
of somewhat more than 50 tables that are listed in the tables of contents referred to
in footnote 5. There are, however, small differences between the manuscripts,
which may be due to the existence of two different zijes by the hand of Kushyar
ibn Labban. As far as the date of compilation of the Jami® Zij is concerned,
Kiishyar gives his planetary apogee values for the year 962, whence it seems

2 More information about Kiishyar ibn Labban can be found in the article "Kushyar" in the

Dictionary of Scientific Biography (DSB).

Kennedy 1956, p. 125 (nos 7 and 9).

4  The Istanbul manuscript was copied in the year 1150 and seems to contain the Jami® Zij in
its original form. The Berlin manuscript is described in Ahlwardt 1893, pp. 203-206, which
also gives an extensive table of contents. The Leiden manuscript is analysed in Kennedy 1956,
pp- 156-157. The Cairo manuscript is described in King 1986, p. 45 (no. B70). Sezgin, GAS,
vol. 6, pp. 247-248 mentions six more manuscripts that contain fragments of the Jami® Zij,
but these do not contain Kushyar’s tables.

5  The table of contents of the explanatory text can be found in Fatih 3418, folios 1¥-2"; Berlin
Ahlwardt 5751, pp. 2-4 (also given in Ahlwardt 1893, pp. 204-205) and Leiden Or. 8 (1054),
folios 1V-2". The list of tables can be found in Fatih 3418, folio 37"; Berlin Ahlwardt 5751,
p. 35 (also given in Ahlwardt 1893, p. 205) and Leiden Or. 8 (1054), folio 21".

w
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plausible that he compiled his zij(es) shortly after this date.® This is confirmed by
a reference in Sezgin, GAS, which indicates that from one of the manuscripts of the
Jami® Zij it can be concluded that Kiishyar finished his zij in 964.7

At the end of the Berlin and Leiden manuscripts of the Jami® Zij we find a
large number of tables that apparently were not part of Kiishyar’s original work.
In many cases these tables display functions that can also be found in the main set
of tables. In the Berlin manuscript, a number of planetary equation tables are
attributed to Ibn al-A°lam (c. 960), some other tables to Abii Ma®shar (Albumasar,
c. 850). In the Leiden manuscript, a set of planetary equation tables is taken from
the Fakhir Zij by al-Nasawi (c. 1030), some other tables mention al-Biriini
(c. 1000) as their author. However, most of the appended tables in both manuscripts
are not attributed.

One of the tables in the manuscript Berlin Ahlwardt 5751 which is not part of
the main set of tables, occurs on pages 178-179. The first half of this table is
entitled "Table of the Solar Equation”, the second half "Table of the Equation of
the Mean Solar Position". The argument is the mean solar position and tabular
values are displayed in zodiacal signs, degrees, minutes and seconds for every
degree of the ecliptic. No further information about the tabulated function or the
author of the table is found. In this article we will unravel the mathematical
structure of this table and we will determine the values of the underlying
parameters. All through this article the table will be referred to as "the true solar
longitude table in the Jami® Zij".

Figure 1: The Ptolemaic solar model

6  See Istanbul Fatih 3418, folio 45".
7  See Sezgin, GAS, vol. 5, pp. 343-344.
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Islamic astronomers used the solar model described in Ptolemy’s Almagest (see
Figure 1).8 According to this model, the sun S moves at uniform speed along a
circle with a radius of 60 units. The centre C of this circle is removed from the
earth E by a distance e, the solar eccentricity. The sun reaches its greatest distance
from the earth at the apogee A and its least distance at the perigee P. The true solar
longitude A is the position of the sun as seen from the earth and is measured by the
angle TES, where T is the vernal equinoctial point. The angle TEA measures the
longitude of the apogee and is denoted by A ,. The true solar longitude differs from
the mean solar longitude X, a linear function of time, by a variable quantity g,
called the solar equation. Usually N is defined in such a way that the angle ACS is
always equal to N - \,. Note that we then have A = N = A\, when the sun is at its
apogee and A = N = N\, + 180° when the sun is at its perigee. Furthermore
A< Nwhenh, < A <\, + 180" and X < N when \, - 180° < A < A,. The
solar equation can be calculated as a function of the true solar longitude by applymg
the sine rule to the triangle CES:

g(A) = arcsin(—6% sin(A- 14, )) (1)

The solar equation can be calculated as a function of the mean solar longitude
by extending the triangle CES to a right-angled triangle DES in which EDS = 90°.

Then
_ in(7 — @
q(4) = arctan(—qj—g—) = arctan esin(4—4,) .
DS 60 +ecos(A—4,)

An inspection of the values in the true solar longitude table in the Jami® Zij
reveals that what has been tabulated is the true solar longitude A as a function of the
mean solar longitude \. In fact, the difference between tabular value and argument
is roughly a sinusoidal function which never exceeds 2 in absolute value, is negative
from 23° Gemini to 22° Sagittarius and positive otherwise. Thus we expect that the
tabulated function will be

AA) =2 - g(A)=1- arctan[

esin(A-1,) ) 3)

60+ecos(A—A4,) )

where g denotes the solar equation, e is the solar eccentricity and A, the longitude
of the solar apogee.

8  For extensive descriptions of the Ptolemaic solar model, see Pedersen 1974, pp. 122-158 or
Toomer 1984, pp. 131-172. For exact and approximative methods that were used by
mediaeval Islamic astronomers to compute the solar equation, see Kennedy 1977 and Kennedy
& Muruwwa 1958.
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315;32,19
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324
325
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329
330
331
332
333
334
335
336
337
338
339

321;40, 3
322;41,13
323;42,22
324;43,31
325;44,40
326;45,49
327;46,40
328;47,31
329;48,21
330;49,11
331;50, 1
332;50,48

333;51,22

334;52,22
335;53, 9
336;53,56
337;54,31
338;55, 6
339;55,41
340;56,16

340
341
342
343
344
345
346
347
348
1349
350
351
352
353
354
355
356
357
358
359
360

341;56,49
342;56,53
343;57,37
344,58, 1
345,58,35
346;58,48
347,58,18
348;59, 8
349;59,18
350;59,38
351;59,48
352;59,48
353;59,48
354;59,48
355;59,49
356;59,49
357;59,38
358;59,27
359;59,16
360,59, 5
361;58,54

Table 1: Tabular differences of Kiishyar’s true solar longitude table

k a b,
0]-0.0000501543

1]-1.9684899033 0.2530317106
21-0.0002099123 -0.0004847958
3]-0.0131708496 0.0049899528
41-0.0001228737  [-0.0003738902
5| 0.0004548023 |-0.0002402755
6| 0.0001358618 0.0002674402
7| 0.0006174986 |[-0.0000334333
8| 0.0002106039 0.0005374500
91-0.0001912837 0.0002584406
10]-0.0000278764 0.0003071745

Table 2: Fourier coefficients of the reconstructed solar equation
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Table 1 displays some of the tabular values 7(\) and their first order
differences DV(N) 4 T(N+1) - T(X).° It can be seen at once that linear
interpolation within intervals of 5 degrees of the argument was applied. Moreover,
it seems probable that what I will call "distributed linear interpolation" was used:
the tabular differences are distributed over the intervals of 5 degrees in such a way
that they are increasing or decreasing over as long as possible stretches of the
argument. ! After the obvious scribal errors indicated below have been corrected,
57 out of the 72 intervals of 5 degrees are in agreement with the assumption that
distributed linear interpolation was used. In addition to the intervals on which the
tabular differences are constant, only one interval is in agreement with the
possibility of ordinary interpolation. By means of the irregularities in the first order
differences, a number of obvious scribal errors in the tabular values can be
corrected. For example, the irregularities in the differences for arguments 340 to
346 can be removed by correcting 7(341) to 342;57,13, T(344) to 345;58,25 and
T(346) to 347;58,58. The correction 7(339)=340;56,15, which restores the
distributed linear interpolation pattern for arguments 335 to 340, is somewhat less
plausible. All corrections made in this way are listed in the Apparatus at the end of
this article. For the following analysis of the true solar longitude table we will only
make use of the independently calculated tabular values.

To the corrected tabular values for multiples of 5 degrees I applied a least
squares estimation as explained in the Appendix, based on the assumption that the
tabulated function is given by equation (3). The results were as follows:

arameter 95 % confidence interval
p

solar eccentricity {24, 4, 2;5,11)
solar apogee {82;25, 6, 82;55,57)

Even though the 95 % confidence intervals contain historically plausible values
of the underlying parameters, we must conclude both from the minimum obtainable
standard deviation of the tabular errors (1°38° ) and from the sinusoidal error
pattern in recomputations for parameter values within the confidence intervals, that
the table was not computed according to equation (3).!! In order to obtain more
information about the tabulated function we will make use of Fourier coefficients.

Let T,(N) %'\ - T(N) denote the solar equation table that can be reconstructed
from the true solar longitude values in the Jami® Zij by subtracting them from the

9  Practically all astronomical tables in ancient and mediaeval sources display values in
sexagesimal notation. In transcribing sexagesimal numbers we will follow the convention that
sexagesimal digits are separated by a comma and that the sexagesimal point is indicated by a
semicolon. Thus the sexagesimal number 1;59,56 denotes 1+ 60°+59 + 601 +56 * 602,

10 In the case of ordinary linear interpolation the differences are distributed evenly between every
two independently calculated values. Thus the tabular differences for arguments 300 to 305
would have been 1;1,37, 1;1,36, 1;1,37, 1;1,36 and 1;1,37 respectively (cf. Table 1).

11 For a table with accurate values to seconds, the minimum obtainable standard deviation of the
tabular errors is approximately 17°““. This follows from the fact that the distribution of the
tabular errors can be shown to be approximately uniform; see van Dalen 1993, Section 1.2.4.
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mean solar longitude. Tq(_):), 2 = 0,5,10,...,355 are then tabular values for a
function f which satisfies fix) = g(x - A,) for every x, where g is an odd function
with period 360°.12 Thus we can use the approximated Fourier coefficients
described in the Appendix.

Table 2 displays the approximated Fourier coefficients

—Z T'(5i)cosSik

i=1

for k = 0,1,2,...,10 and

def 2 n .
= —ZT(Si)smSik
n“
for k=1,2,3,...10.13 We can note the following:

. ghe Fourier coefficients converge rapidly, as can be seen from a,, a3, as and
1» b3’ bS

* The coefficients a, and a, are significanily smaller than a, and a;. Slmllarly,
b, and b, are significantly smaller than bl and b,. In the Appendix it is shown
that if the odd, periodic function g as introduced above satisfies the symmetry
relation g(180 - x) = g(x) for every x, then all Fourier coefficients &k and Bk for
even k are zero. We conclude that the function f tabulated in Kushyar’s true
solar longitude table is such that g contains this symmetry. If the symmetry
were present in all tabular values, the approximated Fourier coefficients g, and
bk for even k£ would actually be zero. The fact that they are small but non-zero
is a result of scribal and computational errors that will be discovered (and
partially corrected) below.

e All approximated Fourier coefficients contain random errors that derive from
the rounding errors (and partially from scribal and computatlonal errors) in the
tabular values. In the approx1mated coefficients a,, a, b, and b these errors
cannot be recognized, since they are smaller than the Fourier coefficients
themselves. In all remaining approximated coefficients the errors overwhelme
the actual Fourier coefficients.

12 The solar equation always has this property, regardless of which of the three common methods
was used for its computation (cf. Kennedy 1977). Furthermore it can be checked directly that
the values Tq(X) have this property at least approximately.

13 The approximated coefficients for k>10 are not displayed, since they show the same
behaviour as the coefficients for k=4 to 10.
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X T,(N) TN ) T,(0\) TN A£0N)
0]-1;58,54 +1°° 180| 1;58,54 +1°°
5|-1;56,59 +3 185| 1;56,59 -1
10]-1;54,10 +4 190| 1;54,10 -1
15]-1;50,27 +5 195 1;50,27 -2

*20|-1;46, 0 -2 200 1;46, 0 +6
25(-1;40,27 +7 205| 1;40,27 -4

*30|-1;34,59 -33 210 1;34,18 -4

* 35|-1;27,44 -9 215| 1;27,44 +13
40(-1;19,58 +8 220 1;19,58 -4
45(-1;11,56 +6 225 1;11,54 -5
50(-1; 3,24 +5 230 1;3,24 -2
55|-0;54,24 +6 235| 0;54,25 -2
60(-0;45, 6 +2 240 0;45,9 +3
65(-0;35,27 +2 245| 0:35,27
70{-0;25,37 -1 250| 0;25,37 +2
75]-0;15,33 +1 255| 0;15,34 +1
80(-0; 5,25 260| 0;5,26 +1
85| 0; 4,44 -1 265|-0; 4,44
90| 014,52 -2 270|-0;14,52
95| 0;24,56 275|-0;24,55
100| 0;34,48 -2 280|-0;34,48 -1
105| 0;44,27 -2 285(-0;44,29 -3
110| 0;53,51 290|-0;53,49 -1
115 1; 2,49 -3 295(-1; 2,49 -1
120| 1;11,23 -4 300|-1;11,24 -1
125 1;19,27 -5 305|-1;19,27. +1

*130| 1;27,7 +4 310|-1;27, 7 -8
135| 1;33,52 -4 *315|-1;33,37 +16
140 1;40, 3 -4 320(-1;40, 3 +1

*145( 1:46, 1 +27 * 325|-1:45,49 -18

150| 1;50,10 -2 330|-1;50, 1 +9

155 1;53,56 -2 335|-1;53,56

160| 1;56,50 340|-1;56,49 +1

165| 1;58,47 345|-1;58,48 -1

* 170| 1;59,36 -11 350|-1;59,48 -1
175| 1;59,49 355|-1;59,49 +1

Table 3: Differences between the reconstructed solar equation and an
approximation based on approximated Fourier coefficients
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We can now compare tabular values Tq(Si) and Tq(5i+ 180) to see whether the
symmetry fix) = -fix+180), which follows from g(x) = -g(-x) combined with
g(180-x) = g(x), is in fact present in the reconstructed solar equation table.
Furthermore, we can compare the tabular values with approximated functional
values fi(x) obtained from a finite Fourier series based on the approximated
coefficients:

4
fK(x)=% Z(ak coskx + b, sin kx) @
k=1

Since in this case all approximated Fourier coefﬁcients starting from k=4 are
of the same order of magnitude, we choose K=3.

Table 3 shows the reconstructed solar equation values T (5i) together with the
differences (in seconds) between these values and the approximated functional
values f3(5i). It can be noted that the general error pattern is regular, but that there
are many outliers, in particular for arguments 20, 30, 35, 130, 145, 170, 200, 215,
310, 315, 325 and 330 (indicated in Table 3 with an asterisk). The tabular values
show the expected symmetry 7,(5i) = -T (5i+180) in 20 out of 36 cases. For the
pairs of arguments 30/210, 135/315 145/325 150/330 and 170/350, T (5i) differs
by more than 8 seconds from -7(5i+180). For eleven other pairs we tqmd a small
deviation from the expected symmetry.

It turns out that we can find plausible corrections for four of the outliers. The
followi1114g list gives the reconstructed solar equation values and the corrected
values.

reconstructed value corrected value
T( 30) = -1;34,59 -1;34,19
7(170) = 1;59,36 1;59,47
T(315) = -1;33,37 -1;33,52
T7(330) = -1;50, 1 -1;50,11

Note that in all four cases the correction (approximately) restores both the
surrounding error pattern and the symmetry 7,(5i) = -T,(5i+180). Furthermore all
four errors are plausible scribal errors. The other eight outliers occur in pairs of
tabular values T,(5{)/T (5i+180) and can therefore not be corrected on the basis of
the symmetry of the reconstructed solar equation. Since no plausible corrections on
the basis of possible scribal mistakes can be given either, we will leave these
outliers unchanged for the time being.

Since the solar equation is an almost linear function in the neighbourhood of its
zeros, inverse linear interpolation between 7,(80) and 7,(85) or T,(260) and T,(265)

14 1 have also considered the possibility that the original tabular values for the true solar
longitude contain more scribal errors than those that we have corrected on the basis of the
interpolation pattern. For instance, the correction of T(170) indicated in the list corresponds
to a correction of the original true solar longitude value 168;0,24 to 168;0,13.
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should ordinarily lead to reasonably accurate values for the solar apogee (in this
case the results are A, = 82;40,6 and A\, = 82;40,20 respectively). However,
because of the large number of errors in the reconstructed solar equation values, it
seems advisable to compute a more accurate estimate and a confidence interval for
A, based on all tabular values by means of the Fourier estimator explained in the
Appendix. In this way we arrive at an estimate

A def

A, = arctan(d, / b,) = 82;40,1

for the apogee. Using

n

) 1 . -\ 2
o zm;(]:,(ﬁ)_f3(51)) > (5)

with f3 according to equation (4), it follows that the standard deviation ¢ of the
tabular errors is approximately equal to 4 ““51°"“. Assuming that the distribution
of the Fourier estimator is approximately normal we find {82:38,56 , 82;41,6) as
an approximate 95 % confidence interval for the solar apogee.

Seeing that none of the remaining outliers occurs for a multiple of 15°, we can
obtain a better estimate and a smaller approximate 95 % confidence interval for the
solar apogee by applying the Fourier estimator to the set of solar equation values
T,(150), i =1,2,3,...,24. It turns out that we can then use K=5 in our
approximation (4) of the functional values, since now a5 and b are significantly
larger than the approximated Fourier coefficients with larger indices. The resulting
estimate for the solar apogee is A,=82;40,6, the approximated standard deviation
of the tabular errors 52 “47". An approximate 95 % confidence interval for the
apogee is now found as ¢82;39,46 , 82;40,26 . Since the differences 7,(15i) -
J5(157) in fact do not show any outliers, we conclude that the table for the true solar
longitude in the Jami® Zij was very probably computed on the basis of the round
solar apogee value A, = 82°40°. Below I will explain why this value is also
historically plausible.

Because of the symmetry g(180 - x) = g(x) discovered above, we know that the
solar equation assumes a maximum for A,+ 90°, and a minimum for A+ 270°.
By means of third order interpolation between the reconstructed values Tq( 165),
T(170), T,(175) and T(180), we find that the maximum is approximately equal to
1;59,55,13. Similarly, we find that the minimum is close to -1;59,55,41. We
conclude that the reconstructed solar equation is probably based on a value of g,
close to 1°59°55”°" or 1°59°56” " (or, equivalently, on a value of the solar
eccentricity e in the neighbourhood of 2°5734°7). Of these values only the
maximum solar equation value q,,,, = 1°59°56" " is attested; it occurs in a solar
equation table in the Ashraft Zij which is attributed to Yahya ibn Abi Mansiir, one
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of the astronomers who worked at the court in Baghdad around the year 830.!°
Kennedy found that this solar equation table, which has the mean solar anomaly as
its independent variable, was computed according to the so-called "method of
declinations", which is probably of Sasanian or early-Islamic origin.!® We will
investigate whether the same holds for the true solar longitude table in the Jami®
Zij, i.e. whether the tabulated function is

F) =g arcsin(sin(x — A ,) - sin¢) | 6)

&

Note that this function satisfies both symmetry relations fix-A,) = -f{-x-\,) and
S(180-x-A,) = fix-\,) that we have also found in the table in the Jami® Zij.

Disregarding the outliers for arguments 20, 35, 130, 145, 200, 215, 310 and
325, which could not plausibly be corrected, I performed a least squares estimation
as explained in the Appendix. Assuming that the true solar longitude table in the
Jami® Zij was computed according to the method of declinations, I found that the
minimum obtainable standard deviation of the tabular errors is 60°”°, and I
obtained the following approximate 95 % confidence intervals:

parameter 95 % confidence interval

maximum solar equation ¢ 1;59,55,18, 1;59,55,47)
obliquity of the ecliptic ~ {23;39,15 , 23;4821 )
solar apogee {82;39,53 , 82;40,13 )

Since the minimum obtainable standard deviation is much higher if we assume any
other plausible method of computation,!” we conclude that the table was very
probably computed according to the method of declinations. The confidence interval

15 The Ashrafi Zij was written in Persian by Muhammad Sanjar al-Kamali (Shiraz,
south-western Persia, c. 1300). It gives the mean motion parameters and planetary equations
from a large number of earlier zijes and is extant in Paris Bibliotheque Nationale Ms. suppl.
persan 1488 (288 folios, 1303 A.D.). For more information on the Ashrafi Zij, see Kennedy
1956, p. 124, no. 4; and Kennedy 1977, p. 183. The solar equation table attributed to Yahya
ibn Abi Mansiir can be found on folio 236" of the Paris manuscript.

16 See Kennedy 1977.

17 We have already seen that the minimum obtainable standard deviation of the tabular errors is
1°38° " if we assume that the correct formula

4(7) = arctan esin(4 -4
60+ecos(A-41,)

for the solar equation was applied. Assuming the formula
. e .
q(A) = arcsm(gasm(l -1, ))

for the solar equation as a function of the true solar longitude or the "method of sines"

q(z) = qmax Sin(z - Z’A )’

the minimum obtainable standard deviation is 387 °.
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for the solar apogee confirms the results that we have found before by means of the
Fourier estimator, so indeed A\, = 82°40°. Since the method of declinations is only
attested for the Ptolemaic obliquity value,'® we can assume thate = 23°51 . Fixing
these two parameter values, we obtain <1;59,55,27, 1;59,56,12) as an approxi-
mate 95 % confidence interval for the maximum solar equation ¢,,,,. Thus we see
that the true solar longitude table in the Jami® Zij was probably computed using
Quax = 1°597°56. ‘

Conclusion: The table for the true solar longitude which is found on pages
178-179 of the manuscript Berlin Ahlwardt 5751 of Kiishyar ibn Labban’s Jami®
Zij was computed according to the so-called "method of declinations" (formula 4).
The underlying parameter values are 1°59 °56°“ for the maximum solar equation,
23°51° for the obliquity of the ecliptic and 82°40 for the solar apogee.

I will now argue that all three underlying parameter values are historically
plausible and that the true solar longitude table in the Jami® Zij probably derives
from Yahya ibn Abi Mansir. We have already seen that 1°59°56"" is the
maximum solar equation value underlying Yahya’s solar equation table in the
Ashrafi Zij. Furthermore, we have seen that the method of declinations is only
attested with the value 23°51“ of the obliquity of the ecliptic. I conjecture that the
solar apogee value 82°40° is a rounded version of the value 82°39°, which,
according to Ibn Yiinus, was observed at Baghdad in the year 214 Hijra by a group
of astronomers headed by Yahya ibn Abi Mansir.!® The solar equation tables in
Yahya’s Mumtahan Zij and in the contemporary zij by Habash al-Hasib extant in
Istanbul Yeni Cami 784/2, both indicate that the solar apogee is in 82°39 *.%° The
two tables are very probably related, since the first 90 values are practically
identical. Habash’s zij contains another table based on the same solar equation
values, which displays A\, plus the solar equation. Here the apogee is taken equal
to 82°40°.%1

We have seen that the true solar longitude table in the Jami® Zij was computed
by means of what I call "distributed linear interpolation”. The extant recension of
the Mumtahan Zij contains a table for the normed right ascension, which is based
on obliquity 23°51° and involves the same type of interpolation.?? Although this
table may simply have been copied from Ptolemy’s Handy Tables,? it seems

18 See Kennedy & Muruwwa 1958, p. 118; Kennedy 1977; and Suter 1914, pp. 132-137.

19 See Caussin de Perceval 1804, p. 56 (p. 40 in the separatum).

20 For the table in the Mumtahan Zij, see Escorial Ms. drabe 927, folio 15" or Yahya ibn Abi
Mansir, p. 28. For the table in Habash’s zij, see Istanbul Yeni Cami 784/2, folios 90"-91"
and Debarnot 1987, pp. 41-42. Both tables were analysed in Salam & Kennedy 1967, pp. 494-
495. The solar equation table in the Mumtahan Zij is completely different from the table in
the Ashrafi Zjj attributed to Yahya.

21 See Istanbul Yeni Cami 784/2, folios 200Y-203" and Debarnot 1987, p. 58.

22 Escorial Ms. drabe 927, folios 48"°49" or Yahya ibn Abi Mansiir, pp. 93-94. See Neugebauer
1975, vol. 1, pp. 31-32 and 42 for more information about the normed right ascension.

23 The normed right ascension table in the Handy Tables can for instance be found in the
manuscript Leiden BPG 78, folios 757-76". The table is transcribed in Stahlman 1959, pp. 206-
209. The normed right ascension in the Mumtahan Zij is practically identical to the table in
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probable that it was an original part of Yahya ibn Abi Mansiir’s zij, and hence that
Yahya was familiar with distributed linear interpolation.

Finally, it can be noted that among the appended tables in the manuscript Berlin
Ahlwardt 5751 of Kiishyar ibn Labban’s Jami® Zij, we find two tables displaying
mean planetary positions at two different epochs according to four astronomers, one
of them being Yahya ibn Abi Mansiir.2* Thus the compiler of the manuscript
apparently had access to Yahya’s zij.

We conclude that there is sufficient reason to believe that the true solar
longitude table analysed here, like the solar equation table on folio 236" of the
Ashrafi Zij, originates from Yahya ibn Abi Mansiir. It seems possible that
Yahya’s solar equation table as found in the Ashrafi Zij, was originally contained
in the Mumtahan Zij, but was later considered unsatisfactory because of its
symmetry (and possibly because of its uncommon value of the maximum equation).
Thus we can imagine how in a later recension, like the one that we find in the
manuscript Escorial drabe 927, it was replaced, possibly by Habash’s table for the
solar equation.

Table 4 displays my final recomputation of the solar equation reconstructed
from the true solar longitude table in the Jami® Zij. The second and fifth columns
contain the reconstructed solar equation values, the third and sixth columns the
differences (in seconds) between these values and a recomputation according to
formula (6) using the parameter values found above. Apart from the eight outliers
(which are again indicated by an asterisk), the number of differences is 40 out of
64 tabular values, the standard deviation of the differences is 1°°5°"".

It seems probable that the true solar longitude table in the Jami® Zij was
computed by means of interpolation in a solar equation table like the one in the
Ashrafi Zij. In fact, if linear interpolation were used, the remaining eight outliers
in our table could be explained from only two erroneous solar equation values. To
see this, we denote the values for the method of declination that were used for the
linear interpolation by g;(d), where @ = 1,2,3,...,90 is the mean solar anomaly.
Remembering that gs(-@) = -q;(@) and q5(180 a) = ¢5(d), it follows that T,(35)
and hence -T, (215) were calculated as 1g;(47) - 3¢5(48), and T, ,(130) and -T, (310)
as 3q6(47) + 1q5(48). The solar equation values g5(47) = 1; 26 30 (equal to the
value given in the Ashrafi Zij) and ¢;(48) = 1;28,21 (computatlonal error for
1;27,567) thus precisely reproduce the four outliers for arguments 35, 130, 215 and
310. In the same way three of the remaining four outliers can be explained if we
assume an erroneous value g;(62) = 1;45,38 (possible scribal error for the Ashraft
value 1;45,13).

I recomputed the true solar longitude table in the Jami® Zij by using linear
interpolation in Yahya ibn Abl Mansiir’ solar equation table in the Ashrafi Zij.
Disregarding the eight outliers, I found 28 differences in 64 values (as compared
to 40 differences for the precise recomputation); the standard deviation of the

the Handy Tables.
24 See Berlin Ahlwardt 5751, pp. 160-161.
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s

. This result is not good enough to conclude that in fact

linear interpolation in the AshrafT table was applied.
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A T\ error A T\ error
0]-1;58,54 180 1;58,54
51-1;56,59 +17° 185 1;56,59 -1
101-1;54,10 190 1;54,10
15(-1;50,27 195| 1;50,27

*20(-1;46, 0 -9 *200| 1;46,0 +9
25(-1;40,27 +1 205( 1;40,27 -1
30]-1;34,19 -1 210( 1;34,18

*351-1;27,44 -17 *215| 1;27,44 +17
40(-1;19,58 +1 220( 1;19,58 -1
451-1;11,56 225( 1;11,54 -2
50(-1; 3,24 -1 230| 1; 3,24 +1
551-0;54,24 +1 235 0;54,25
60]-0;45, 6 -1 240( 0;45,9 +4
651-0;35,27 245| 0;35,27
70(-0;25,37 -2 250| 0;25,37 +2
751-0;15,33 255| 0;15,34 +1
80]-0; 5,25 260 0;5,26 +1
85| 0; 4,44 -1 265|-0; 4,44 +1
90| 0;14,52 -1 270(-0;14,52 +1
95( 0;24,56 +1 275(-0;24,55

100| 0;34,48 2801-0;34,48

105] 0;44,27 2851-0;44,29 -2

110| 0;53,51 +3 290(-0;53,49 -1

115( 1; 2,49 +1 2951-1; 2,49 -1

120] 1;11,23 300(-1;11,24 -1

125] 1;19,27 -1 305(-1;19,27 +1

*130( 1;27,7 +8 *310(-1;27, 7 -8

135] 1;33,52 . 315(-1;33,52

140| 1;40, 3 -1 320(-1;40, 3 +1

*145( 1;46, 1 +30 * 325(-1;45,49 -18

150 1;50,10 330(-1;50,11 -1

155| 1;53,56 -1 335|-1;53,56 +1

160| 1;56,50 340(-1;56,49 +1
165| 1;58,47 -1 345]-1,58,48

170| 1;59,47 -1 350]-1;59,48

175| 1;59,49 -1 3551-1;59,49 +1

Table 4: Final recomputation of the reconstructed solar equation
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Apparatus

Scribal errors in Kiishyar ibn Labban’s table for the true solar longitude
corrected on the basis of the interpolation pattern (the corrected digits are given
between brackets; possible errors of 1°“ for arguments 204, 206 and 212 were not
corrected):

=21 T(N)= 22;44,33 (53°") A= 136 T(\)= 134;24,13 (53"")

33 34;30,18 (387") 146 144;14,59 (13°)

47 48; 8,22 (3277) 147 145;12,59 (19°°)

57 57;50,40 (42°°) 181 179; 1,21 29°°)

78 78; 9,39 (297) 279 279;32,30 (50°°)
104 103;17,18 (28°") 298 299; 7,18 (58°°)
116 116;15,28 (557) 341 342;56,53 (57°137°)
117 115;13,45 (53°) - 344 345;58,35 (25°7)
130 128;32,13 (53°°) 346 347,58,18 (58°°)

Appendix

This appendix briefly describes the statistical estimators that I use in this article
to determine the mathematical structure and unknown parameter values of Kushyar
ibn Labban’s table for the true solar longitude. More detailed information
concerning approximated Fourier coefficients in general and the Fourier estimator
in particular can be found in Section 2.3 of my doctoral thesis (van Dalen 1993).
A more extensive discussion of least squares estimation can be found in Section 2.4
of my thesis.

The following notations are used throughout this article:

A table for a mathematical function is denoted by T, the tabular values of that table
by T(x), where x indicates the argument. The tabulated function is always denoted
by f. The tabular errors e(x) are defined by e(x) = T(x) - fix) for every argument
x. Since in this way the tabular error includes the error made by rounding a
calculated functional value to the accuracy of the table under consideration, it
follows that practically every tabular value contains a non-zero tabular error. An
extensive discussion of the distribution of tabular errors can be found in van Dalen
1993, Section 1.2.4. For every parameter that I estimate a so-called 95 %
confidence interval is calculated. Such intervals are expected to contain the
underlying parameter value in 19 out of 20 cases.

Approximated Fourier coefficients
Let f'be a 2w-periodic function and assume that the Fourier series of f converges,
i.e. that, for every x € [0,27],
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f(x)=3a,+ Z(ak coskx + b, sin kx),

where k=1
1 27
a, =— jf(x)coskx
72 0
and
1 2z
b, =— [ f(x)sinkx dx
T 0
for every k.

Now suppose that we have a table T of the function f with tabular values 7T(ia)
fori = 1,2,3,...,n, where n is a multiple of 4 and @ = 2#/n. Since for every 2-
periodic, twice continuously differentiable function # we have

2z n 3
[ AGx)dx =223 i) + 2 (9),
5 n ‘s 3n

where § € [0,27], it follows that the Fourier coefficients a, and b, of the function
J can be approximated by

def2 n

a, ==Y f(ia)cosika
g
and

~ def n
b, = —%Zf(ia) sinika
nia

respectively. I found that in practice the errors in these approximations can be
neglected if the number of tabular values 7 is at least equal to twelve.

Since we do not know the functional values f{ia) themselves, we have to
approximate them by the given tabular values 7(ic). Thus we will estimate the
Fourier coefficients g, and b, by

R def ) [N
a, = —-Z T(iax)cosika
i=1
and
d

A def n
b, = %Z T(ia)sinika
i=1

respectively. If the tabular errors T(icr) - f{icr) are denoted by e(ic:), then we have
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a,—-a, = —Ze(za) cosika

i=1

and
o 20
b, —b, == e(ia)sinika.

i=1

Assuming that the tabular errors are mutually independent and have a common
mean 0 and variance o2, we find that ak and bk have a negligible bias (namely the
error made in the approximation of the integral in the definition of the Fourier
coefficients by a finite sum) and a variance Var g, = Var b,= 2¢%/n. Furthermore
a and b, have a zero covariance. Using the Central Limit Theorem we find that
both a, and b, have a distribution which is approximately normal.

In Islamic astronomical handbooks we find tables of 2x-periodic functions f
that, for some odd function g and a constant A, satisfy the relation f{x) = g(x-\,)
for every x. If the Fourier series of fconverges, the Fourier series of g converges
as well, and we can derive the Fourier coefficients of g from those of f. For every
x € [0,27] we have

gx) =f(x+4,)

1
= 24

+ Y a,(coskx-coskA , —sinkx-sinkA ,)

k=1

+Zbk (sinkx -coskA , +coskx-sinkA ,)

k=1

+Z(ak coskA , +b, sinkA ,)coskx

k=1

+Z(bk coskA , —a, sinkA ,)sinkx.
k=1

Since g is an odd function, it follows that for every k we have
@,co8 kN +b;sin kN = 0. In cases where g also satisfies the symmetry relation
8(180-x) = g(x) for every x, it can be shown that f{x+180) = -f{x) for every x and
that g, = b, = 0 when k is even. If the tabular values satisfy the symmetry relation
T(x+180) = -T(x) for every x, then ak 13 = ( for even k.

25 The notation A\, is chosen since in practice the constant will often be the solar apogee.
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Fourier estimator

As above, let f'be a 27-periodic function with convergent Fourier series. Assume
that f{x) = g(x-\,) for every x, where g is an odd function and A, an unknown
constant. Let T be a table for f with tabular values T(iet), i = 1,2,3,...,n, where n
is a multiple of 4 and o=27/n. Again let e(icz) denote the tabular errors T(icr) f{icr)
and ¢ the common variance of these errors. Let a; and b, denote the Fourier
coefficients of the function fand let @, and b, be the estimators for these coefficients
introduced above.

We have seen that a, and b, satisfy the relation g;cos kN, + bysin kA, = O for
every k. Provided that b, is not equal to zero, this implies that tan AN, = -a; / b;
for every k and that A (k) defined by tan A (k) is an estimator for A, for every .
The calculation of the accuracy of this estimator is straightforward and can be found
in my doctoral thesis.?® It turns out that the bias of A , is negligible (it is of the order
of ¢ for o - 0) and that

A 180° 20°

Vard, = +0(c?).
4 7 nk*(al +b}) (@)

Since the Fourier coefficients converge rapidly for most functions f of which
we find tables in Islamic astronomical handbooks, the estimator with the smallest
variance is obtained for k=1. I call this estimator the "Fourier estimator". The
distribution of the Fourier estimator is in most cases very close to normal.

Least Squares estimation

Let T be a table with tabular values T(x), x € X, for the function f, which depends
on the parameter vector 6. Let the objective function ®(6) be defined as the sum of
the squares of the tabular errors:

(G) = D (t(x) = fo(x)*.

XEX

A least squares estimate for the parameter vector 6 is a vector f that minimizes
®(6).

Whenever f; is a non-linear function, we need an iterative optimization
procedure in order to calculate a least squares estimate for the parameter vector
underlying a particular table. It turns out that for most types of tables in Islamic
astronomical handbooks the so-called Gauss-Newton procedure converges rapidly
to a least squares estimate. Once the estimate ® has been obtained, we can
approximate the standard deviation o of the tabular errors from o = ®(@)/n. 1refer
to this approximation as the "minimum obtainable standard deviation" of the tabular
errors. If the minimum obtainable standard deviation is much larger than what we
expect on the basis of the number of sexagesimal digits of the tabular values, then

26 See. van Dalen 1993, pp. 49-50.
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it is probable that f, is not the tabulated function. If the minimum obtainable
standard deviation is small enough and the tabular errors can be assumed to be
independent and to have zero means and equal variances, then separate confidence
intervals for all underlying parameters of the table under consideration can be
computed from the found least squares estimate. More information about least
squares estimation can for instance be found in van Dalen 1993, Section 2.4 or in
Draper & Smith 1981, Chapter 10.
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