Studies in the Istamic Exact Sciences in Honour of Prof. Juan Vernet AL-KHWARIZMD'S ASTRONOMICAL TABLES REVISITED:
| ANALYSIS OF THE EQUATION OF TIME

Benno van Dalen!

Contents

Introduction

Al-KhwarizmI’s life and works

Sources for the study of al-Khwarizmt’s astronomical tables

Survey of previous results about al-Khwarizm1’s astronomical tables
The equation of time v

Analysis of al-Khwarizmi’s table for the equation of time

- Description of the table

- Conversion factor

- Independent variable

- Reconstruction of the underlying right ascension and solar equation
- Approximation of the epoch constant

- Method of least squares

- Interpretation of the results of the method of least squares

- Confidence intervals

- Displaced solar equation

- The shift in al-Khwarizm1’s table for the equation of time
Conclusions

8. Bibliography

AR

~

DE BAGDAD A BARCELONA

Estudios sobre Historia de las Ciencias Exactas en el Mundo Islimico
en honor del Prof. Juan Vernet

SEPARATA

Anuari de Filologia (Universitat de Barcelona) XIX (1996) B-2
Instituto "Millas Vallicrosa" de Historia de la Ciencia Arabe

Barcelona 1996

Johann Wolfgang Goethe-Universitidt, Institut fiir Geschichte der
Naturwissenschaften, 60054 Frankfurt am Main, Germany.




196 B. van DALEN

1. Introduction

Al-Khwarizmi was an influential Muslim mathematician,
astronomer and geographer who lived in Baghdad in the first half of the
9th century A.D. His main astronomical work was a zij, an astronomical
handbook with tables and explanatory text, called the Sindhind Zij. This
work was largely based on Indian methods, as opposed to most later
Islamic astronomical handbooks which utilized the Greek planetary models
laid out in Ptolemy’s Almagest. The Sindhind Zij is only extant in a Latin
translation of a recension by Maslama al-Majritt (Cordoba, c. 980).
Through this translation and the so-called Toledan Tables some of the
Indian methods used by al-Khwarizmi made their way to Western Europe.

The mathematical structure and underlying parameter values of
practically all tables in the Latin version of al-Khwarizm1’s Sindhind Zij
have been determined. Using the mathematical information obtained in
this way the origin of most of the tables could be ascertained. One of the
very few tables of which the mathematical structure has not yet been
established, is the table for the equation of time. In this article T will
present a full analysis of this table and will show that it is based on two
Ptolemaic parameter values plus a value found by the group of
astronomers who compiled the Mumtahan Zij (Baghdad, c. 830).

The main mathematical tool wused for the analysis of
al-Khwarizmi’s table for the equation of time is the method of least
squares. The application of this method will be described step by step. In
this way it is hoped to enable the reader to perform similar determinations
of the unknown parameters of an astronomical table by means of the
computer program TA (Table-Analysis), available from the author.

In Section 2 of this article information is presented concerning al-
KhwarizmT’s life and works. Section 3 gives an overview of the available
primary and secondary sources related to the Sindhind Zjj. In Section 4 1
present a detailed survey of previous results about al-KhwarizmI’s
astronomical tables, including the most important technical details and
ample references. After the explanation of the equation of time in Section
5, al-Khwarizm1’s table for the equation of time will be extensively
analysed in Section 6. A summary of the results of this analysis can be
found in Section 7.
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2. Al-Khwarizmi's life and works

Abii Ja°far Muhammad ibn Misa al-Khwarizm1 lived in the first
half of the 9th century A.D.? His name indicates that his ancestors came
from Khorezm, a region south of the Aral sea. According to the historian
al-TabarT (Baghdad, 839-923 A.D.), al-Khwarizmi himseif came from
Qutrubbul, a suburb of Baghdad.

Al-Khwarizmi was active in Baghdad as a mathematician,
astronomer and geographer during the reigns of the Abbasid caliphs
al-Ma’miin (813-833), al-Mu‘tasim (833-842) and al-Wathiq (842-847).
During the reign of al-Ma’miin he became a member of the "House of
Wisdom", a scientific institution strongly supported by the caliph (cf. the
EI* article "Bayt al-hikma"). Al-Khwarizmi’s works on algebra and
astronomy were dedicated to al-Ma’miin and were hence probably written
before 833. His treatise on Hindu numerals refers to the work on algebra
and must therefore be later; his treatise on the Jewish calendar gives an
example for the year 823 / 824. The dating of al-Khwarizmi’s remaining
known works, a treatise on geography, a chronicle, a treatise on the
sundial and two treatises on the astrolabe is problematic.

Al-Khwarizmi’s works were influential both in the Arab world and
in medieval Europe. His work on algebra al-Kitab al-mukhtasar fi hisab
al-jabr wa’l-muqabala (The Compendium on Calculation by Completing
and Balancing) was in use as a textbook for several centuries and served
as an archetype for treatises on algebra by later authors. The Latin
translation of this work stood at the basis of the development of European
algebra, to which it gave its name.

The Latin translation of al-Khwarizmt’s work on arithmetic with
Hindu numerals, of which the original Arabic text is no.longer extant,
initiated a number of 12th and 13th-century European works on
arithmetic. The titles of many of these works contained the Latinized
version "Algorismus" of al-Khwarizmi’s name, from which our word
"algorithm" derives.

2 Most of the following information was taken from the DSB article

"al-Khwirizmi" by Gerald J. Toomer. For more extensive references and further
biographical and bibliographical information the reader is also referred to the EP
article "al-Khwarazmi" by Juan Vernet, and to Sezgin 1971-1984, vol. 5,
pp. 228-241 and vol. 6, pp. 140-143.
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Al-Khwarizmi’s main astronomical work was called the Sindhind
Zij.2 1t was largely based on Indian methods and parameter values taken
from the Sindhind, an Arabic translation (made around the year 770 by
al-Fazari) of the Brahmasputasiddhanta by the T7th-century Indian
astronomer Brahmagupta. Other elements were taken from the Shah Zij,
a non-extant Persian work of the 6th century, and from the
Khandakhddyaka, another work by Brahmagupta. The Sindhind Zjj existed
in a larger version, which included explanations of the models used, and
a smaller version containing only tables and instructions for their use.
Neither version is extant in the original Arabic. The smaller version
became known in Spain in the 9th century and a recension of it was made
by the 10th-century Muslim mathematician and astronomer Abi’l-Qasim
Maslama ibn Ahmad al-Faradi al-Majriti, who worked in Cordoba.*
According to the 11th-century historian and astronomer Sa°id al-Andalusi,
al-MajritT converted the planetary tables in al-Khwarizmi’s zj from the
Persian to the Arabic calendar and adapted some of the tables to the
geographical longitude of Cordoba. Al-Majriti’s recension is only extant
in a 12th-century Latin translation by Adelard of Bath, which is the main
source for research on al-Khwarizmi’s astronomical tables (cf. the
following section).

3. Sources for the study of al-Khwarizm('s astronomical tables

For the study of al-Khwarizm1’s Sindhind Zij the following

 The Arabic word zij derives from the middle Persian zig. It indicates an
astronomical handbook with tables and explanatory text.

* Al-Majriti is known to have written a work on commercial arithmetic
(Mu‘dmaldr) and was the first Andalusian astronomer who made astronomical
observations of his own. His disciples, among whom were Ibn al-Saffar, Ibn
al-Samh, “Amr ibn “Abd al-Rahman al-Kirmani and Ibn Barghiith, were influential
mathematicians and astronomers throughout Spain. For further ihformation, see the
DSB article "al-Majritt" and the EJ? article "al-Madjriti" by Juan Vernet. See also
Vernet & Catald 1965 and Samsé 1992, pp. 80-110.
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primary sources are available:’

1) The Latin translation by Adelard of Bath of al-Majriti’s recension of
the smaller version of al-Khwdrizmi's z{j. This translation is available
in nine manuscripts, some of which contain fragments only. The
relationship between the manuscripts was discussed extensively in
Mercier 1987, which lists the manuscripts in footnote 9 on page 89.
The manuscripts Chartres Bibliothdque publigue No. 214 (173),
Madrid Biblioteca Nacional No. 10016, Oxford Bodleian Library Cod.
Auct. F.I. 9 (Bernard No. 4137) and Paris Bibliothéque Mazarine No.
3642 (1258) were used by Suter for his edition and commentary
published in 1914, Neugebauer (1962) translated the Latin version of
al-Khwarizmi’s z7j into English and provided a new commentary giving
many new insights into the mathematical structure and the origin of the
tables. He included a complete edition and translation of the
manuscript Oxford Corpus Christi College Ms. 283. Recently Pedersen
(1992) established that a set of astronomical rules in the Latin
manuscript Oxford Merton College 259 is close to al-Khwarizmi’s
original zij.

2) The commentary on the larger version of al-Khwdrizmi’s zij by Ibn
al-Muthanna. This 10th-century work is lost in the Arabic original. A
Latin translation by Hugo Sanctallensis is available in the manuscripts
Oxford Bodleian Library Arch. Selden B 34, Oxford Bodleian Library
Savile 15, and Cambridge Gonville and Caius College 456. Two
Hebrew translations, one of which by Ibn Ezra, can be found in the
manuscripts Parma Biblioteca Palatina 2636 (De Rossi 212) and
Oxford Bodleian Library Ms. Michael 400. The Latin translation was
edited in Millds Vendrell 1963; the Hebrew versions were edited and
translated in Goldstein 1967.

3) The commentary on al-Khwdrizmi’s zij by Ibn Masrir. This 10th-
century commentary, entitled Kitab ‘ilal al-zijat (Book of the reasons
of the zijes) and available as Cairo Taymiir Math. 99 (see King 1986,
no. B37, p. 38), has not been published. Kennedy and Ukashah
consulted the manuscript for their investigation of al-Khwarizmi’s
tables.for planetary latitude (1969), King for his research about lunar

S Detailed information about the manuscripts listed below can be found in the
secondary sources indicated.
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crescent visibility tables (1987).

4) The Toledan Tables. The Toledan Tables were written by the
Andalusian astronomer al-Zarqali (or Azarquiel) in the 11th century.
The original Arabic has been lost, but various Latin versions of both
the tables and the explanatory text are extant in more than 100
manuscripts scattered all over Western Europe. These manuscripts
contain several tables from al-Khwarizm1’s original zfj, some of which
are not found in al-Majriti’s recension. The Toledan Tables were
described in Zinner 1935 and Millds Vallicrosa 1943-1950, pp. 22-71,
and were extensively analysed by Toomer (1968). The explanatory text
from a group of manuscripts was published by F.S. Pedersen (1987),
who is currently preparing a complete edition of the tables.

A commentary on al-Khwarizmi’s zff by al-Farghani, mentioned
by al-Biriini and Ibn al-Muthanna, is non-extant. Some of the tables in the
only extant manuscript of al-Battant’s $abi’ Zfj (Escorial drabe 908) are
explicitly attributed to Maslama al-Maijriti and can thus be used to identify
additions by al-Majrit1 in the Latin translation of al-Khwarizmi’s zij (cf.
Nallino 1899-1907, vol. 2, pp. 300 ff.).

Valuable information concerning the transmission of Indian and
Persian astronomical knowledge to Baghdad in the 8th century can be
found in Kitab ‘ilal al-zijat (The book of the reasons behind astronomical
tables)y by °Ali ibn Sulayman al-Hashimi ("al-Hashimi" in the
bibliography). This information was explored by Pingree in his
publications 1968a, 1968b and 1970.

The most important secondary sources dealing with al-Khwa-
rizmi’s Sindhind Zijj have been mentioned above. Many articles have
appeared about particular tables in the zfj; these are:listed in the
bibliography and will be referred to in my survey of previous results
about the mathematical structure and origin of the tables in al-MajritT’s
recension in the following section.

4. Survey of previous results about al-Khwdrizmi’s astronomical tables

In this Section I summarize the most important previous results
concerning the mathematical structure and origin of the tables in al-
Majriti’s recension of al-Khwarizmi’s Sindhind Zij. For every table or

published in 1914 (for tables displaying multiple functions, the respective
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columns are indicated by 1°, 2°, etc.); furthermore, to the relevant page
numbers in Neugebauer’s translation and commentary (1962) and in
Goldstein’s edition of Ibn al-Muthanna’s commentary (1967). In these
publications the reader can also find complete technical descriptions of the
functions tabulated in al-Khwarizm’s z{j. References to other secondary
sources will only be given for results that cannot be found in one of the
three above-mentioned works. The tables are listed in the order in which
they occur in Suter’s edition. Note that tables 57b (multiplication of
sexagesimal fractional digits) and 116 ("houses, judges and decans") were
left out, because they were not mathematically computed. Al-Khwarizmi’s
tables for timekeeping, the gibla and the construction of sundials and
astrolabes, which were not part of his zij, are described in King 1983.

CHRONOLOGICAL TABLES
(Suter 1-3a, Neugebauer pp. 82-89, Goldstein pp. 16-25)

Like most Islamic astronomical handbooks, al-Khwarizmi’s
original zfj contained a set of chronological tables similar to the set in the
Latin translation of al-Majriti’s recension. Al-Majriti made some small
modifications to the tables for the notae (days of the week of year and
month beginnings; cf. Goldstein p. 88 and al-Hashimi, pp. 231-234).
Furthermore, aithough he maintained the epoch and the year beginning
(1 October) of the Byzantine calendar, he moved the intercalary day from
the end of February to the end of December (Table 3a).

MEAN MOTIONS
(Suter 4-20, Neugebauer pp. 90-95, Goldstein pp. 26-28 and 190-191)
Al-Khwarizmi’s original mean motion tables were calculated for
the Persian calendar and the Era Yazdigird. They were based on the
Indian mean motion theory, which assumes that at the time of the creation
all planets and their apogees and nodes had a mean position equal to 0°
Aries. Al-Khwarizm1’s original mean motion values were probably given
to an accuracy of sexagesimal thirds (cf. Goldstein pp. 28 and 152), and
were calculated for the meridian of Ujjain in Central India (in Arabic
sources called Arin). »
According to S2°id al-Andalus1, al-Majriti adapted al-Khwa-rizmi’s
mean motion tables to the Arabic calendar. The mean motion tables
preserved in the Latin translation of al-Khwarizmi’s zij are indeed based
on the Arabic calendar and are intended for the meridian of Arin. It can
be shown that most of the tables are in agreement with the Indian period
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relations occurring in Brahmagupta’s works (Burckhardt 1961 and Toomer
1964, pp. 207-208; see also Mercier 1987, pp. 90-92).

SOLAR EQUATION
(Suter 21-26 3°, Neugebauer pp. 19-21 and 95-96)

Tbn al-Muthanna gives hardly any information concerning the solar
equation table in al-Khwarizmi’s original zfj. However, there is little
doubt that the table in al-Majritt’s recension stems from al-Khwarizmi.
This table was computed according to the so-called method of declinations
described by al-Birini (Kennedy & Muruwwa 1958, p. 118), whereas
Indian astronomers used the method of sines.® Since Ibn al-QiftT states
that al-Khwarizmi took his planetary equations from "the Persians”, it
seems plausible that the method of declinations derives from the Shah Zjj.
Al-Majriti’s maximum solar equation 2°14' occurs both in the
Khandakhadyaka (Neugebauer p. 96) and in the Shah Zij (Kennedy & Van
der Waerden 1963, p. 326). His value 77°55' for the longitude of the
solar apogee is in agreement with the mean motion system used by
Brahmagupta (Pingree 1965). The same values for eccentricity and
longitude of the apogee were found by Neugebauer (pp. 90-91) to underlie
the small table for the mean solar position at the entry of the sun in the
zodiacal signs (Suter 4). The solar equation table in al-Majritr’s recension
was not computed by means of linear interpolation between values for
multiples of 3% °, as suggested by Ibn al-Muthanna (Goldstein pp. 42-43).

LUNAR EQUATION
(Suter 21-26 4°, Neugebauer pp. 21 and 96)

Al-Majriti’s recension tabulates only a single lunar equation. Like
the solar equation, this table was computed according to the method of
declinations and has the same maximum value (4°56') as the Khanda-
khadyaka (which employs the method of sines) and the Shah Zij. No traces
of linear interpolation can be recognized. The equation is probably of

SA planetary equation g computed according to the method of sines is given by
g(x) = uu Sin x , wWhere ¢, is the maximum equation. An equation computed by
the method of declinations is given by g(x) = ¢.,,° 8(x)/ &, where § represents the
solar declination for obliquity of the ecliptic ¢.
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Persian origin.’

SOLAR DECLINATION
(Suter 21-26 5°, Neugebauer pp. 96-97, Goldstein pp. 49 and 64-66)

' Al-Khwarizmi’s original zij contained two tables for the solar
declination. In one of these tables al-Khwarizmi followed Ptolemy,
although he replaced the obliquity value 23°51'20” used both in the
Almagest and in the Handy Tables by 23°51'0". In the other table he
followed the Indian tradition by displaying differences between declination
and "versed declination” values for multiples of 15° based on the obliquity
value 24°. Al-Majriti’s recension only contains the Ptolemaic table; the
Toledan Tables include both the Ptolemaic table (Toomer 1968, pp. 27-
28) and, as part of the explanatory text, the Indian values (Millds
Vallicrosa 1943-1950, pp. 43-45).

LUNAR LATITUDE
(Suter 21-26 6°, Neugebauer pp. 97-98, Goldstein pp. 89-92 and 211-213)

The lunar latitude table in al-Majrit?’s recension was computed
according to the method of sines and has a maximum value of 4°30’. This
is in agreement with the commentaries of both Ibn al-Muthanna and Ibn
Masriir (Kennedy & Ukashah 1969, pp. 95-96). The same maximum lunar
latitude can be found in Indian sources such as the Siryasiddhanta and the
Khandakhadyaka (Sengupta 1934, p. 32) and, according to Ibn Yiinus, in
the Shah Zij (Delambre 1819, pp. 138-139).

PLANETARY EQUATIONS
(Suter 27-56 3°-5°, Neugebauer pp. 22-30 and 98-101, Goldstein pp. 30-45 and 192-198)
Al-Khwiarizmi’s calculation of the true planetary positions as
described by Ibn al-Muthanna is based on Indian methods which were
fully explained by Neugebauer (1956, pp. 12-26). The tables and
instructions in al-Majriti’s recension are in agreement with these methods.
The maximum equations agree very well with those from the Shah Zj as
reported by Ibn Hibinta and al-Biriini (Kennedy 1956a, pp. 170-172). The
equations of centre were computed according to the method of sines using

’ Note that, for instance, Brahmagupta applies a second correction to the lunar
mean motion, which is derived from the solar equation (Sengupta 1934, pp. 21-22).
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linear interpolation within intervals of 15°.® The equations of anomaly
correspond fairly well to the simple eccentric model and are thus
approximately given by tan g(x) = e-sin x/ (60 + e-cos x), where g
is the equation and e the eccentricity. The constant longitudes of the
planetary apogees implicit in the column for the modified apogee and
confirmed by the explanatory text and by Ibn al-Muthanna agree with
values calculated from the Khandakhdadyaka (Toomer 1964, p. 207).

PLANETARY STATIONS
(Suter 27-56 6°, Neugebauer pp. 30-31 and 101, Goldstein pp. 45-49 and 198)

Both the theory and the tables for the planetary stations in
al-MajritT’s recension are Ptolemaic. Ibn al-Muthanna confirms the
presence of the tables among the planetary equation tables in
al-Khwirizm1’s original zfj. The tabular values are close to those in the
Handy Tables, but not always identical with them. The same tables for the
planetary stations occur in the Toledan Tables (Toomer 1968, p. 60).

PLANETARY LATITUDES
(Suter 27-56 7°-8°, Neugebauer pp. 34-41 and 101-103, Goldstein pp. 92-94 and 213-215)

Al-Khwarizmi’s rules for the determination of the planetary
latitudes given in the commentaries of Ibn Masriir and Ibn al-Muthanna
and in al-Majriti’s recension are of Indian origin. The maximum latitudes
mentioned in the commentaries are the same as those in al-Majrit’s tables
and occur in Indian sources like the Saryasiddhanta and the
Khandakhadyaka. The second latitude tables (column 8) were computed
according to the method of sines and are accurate to seconds. The first
latitude tables (column 7) are not in full agreement with the Indian rules.
Toomer (1964, pp. 205-206) suggested that this could be the result of an
error made by al-Majritt when he replaced the value 150 for the radius of

.the base circle by 60 (cf. the section about the sine below). However,
Kennedy & Ukashah (1969) showed that the tables agree with the
incorrect explanation of the Indian rules presented in the commentaries of
Ibn Masriir and Ibn al-Muthanna. The constant longitudes of the planetary
nodes, given in the tabular headings, agree with calculations based on the
Khandakhadyaka (Toomer 1964, p. 207). Al-Majritr’s planetary latitude

* In the equation of centre for Mars the use of two additional independently
calculated values for arguments 82%4° and 97'4° can be recognized.
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tables are also present in the Toledan Tables (Toomer 1968, pp. 69-70).

LUNAR VISIBILITY
(Suter 57a, Neugebauer pp. 42-44 and 103, Goldstein pp. 96-104 and 218-225)

The presence of a table for lunmar crescent visibility in
al-Khwarizmi’s original zjj cannot be ascertained from the commentaries
by Ibn al-Muthanna and Ibn Masrar. However, a table attributed to
al-Khwarizmi can be found in various sources (King 1987, pp. 189-192).
This table can be shown to be based on the Indian visibility criterion with
obliquity of the ecliptic 23°51' and geographical latitude 33°. The
different table in al-MajritT’s recension was studied by Kennedy &
Janjanian (1965) and by King (1987, pp. 192-197). A systematic analysis
by Hogendijk (1988, pp. 32-35) led to the conclusion that the table was
based on the Indian visibility criterion and either obliquity 23°35’ and
latitude 41°35’ or obliquity 23°51’ and latitude 41°10’.

SINE
(Suter 58-58a, Neugebauer p. 104, Goldstein pp. 49-62)

Al-Khwirizmi’s original z§j contained sine and versed sine values
for so-called kardajas ("sections", multiples of 15 degrees), which were
computed for a radius of the base circle equal to 150’. Such values derive
from Indian sources (see, for example, the Khandakhdadyaka, Sengupta
1934, p. 32) and are also present in the explanatory text of the Toledan
Tables (Millds Vallicrosa 1943-1950, pp. 43-44). According to Ibn
al-Muthanna’s commentary, the intermediate values for integer degrees
had to be filled in by means of interpolation. One possible way in which
al-Khwarizmi could have done this was discovered by Hogendijk (1991).
He found that a table for a function called sine of the hours, which
follows al-Khwarizmi’s treatise on the astrolabe in a manuscript in Berlin,
is based on the Indian sine values for kardajas and a special type of linear
interpolation.

The sine table in al-Majritt’s recension is based on radius 60 and
must therefore be a later addition. Bjarnbo noted that it was computed by
halving Ptolemy’s chord values and truncating the result after the second
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sexagesimal fractional digit (1909, pp. 12-13).°

RIGHT ASCENSION
(Suter 59-59b, Neugebauer pp. 46-48 and 104-105, Goldstein pp. 69-76 and 202-204)
Al-Khwarizmi’s original zfj contained a table of the right
ascension for every degree of the ecliptic starting with Capricorn, thus
following Ptolemy’s Handy Tables. The table in al-MajrTt1’s recension also
starts from Capricorn and, like the solar declination, is based on the
obliquity value 23°51'0". We conclude that it is very probably
al-Khwarizmi’s original table.

OBLIQUE ASCENSION
(Neugebauer pp. 48-55, Goldstein pp. 76-81 and 204-206)

Neither al-Khwarizmi’s original zff nor al-Majriti’s recension
contain a table for the oblique ascension. Instead it is explained both in
Ibn al-Muthanna’s commentary and in al-Majriti’s recension how to
calculate the rising times by means of a right ascension table, a shadow
length table for gnomon length G=12 units, a table for the diminutions of
the rising times for the entire earth displaying R-tan 6 / G (where R is
the radius of the base circle and & the solar declination), and inverse
interpolation in a sine table for radius R. These rules are of Indian origin
and can also be found in the Toledan Tables. Of the required tables
al-MajritT’s recension contains the right ascension (for al-Khwarizmi’s
obliquity value 23°51'0"), the shadow length (for G=12), and the sine

° In my opinion the sine table in al-Majriti’s recension of the Sindhind Zij is
different from the sine table for radius 60 in the Toledan Tables: the number of
differences between the two tables which cannot be explained as scribal errors is
large enough to make it plausible that the tables were calculated independently (cf.
Toomer 1968, p. 29). The Toledan Tables also contain a sine table for radius 150
(Toomer 1968, p. 27), which is practically identical to the table in a Latin manuscript
with tables for Newminster (England), which was published in Neugebauer &
Schmidt 1952, pp. 226-227. From the fact that nearly all values in this table end in
0, 2, 5 or 7, it can be concluded that it was computed from a sine table for radius
60 by multiplying by 2'%, possibly in order to construct a set of tables for
determining oblique ascensions based on al-Khwirizm1’s parameter values (see
below). The underlying sine table for radius 60 is different from the table in al-
Majriti’s recension.
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(for R=60 instead of al-Khwarizmi’s R=150), but omits the table for the
diminutions. In the Toledan Tables we find a table for R-tan § / G,
which was shown by Lesley (1957, p. 125-127) to be based on R=150,
G=12 and obliquity 23°51'0".' In Ibn al-Muthanna’s commentary three
values of al-Khwarizm1’s table for R- tan 6 / G are mentioned (Goldstein
p. 80; Millds Vendrell 1963, p. 145). Since the table in the Toledan
Tables displays the same values (disregarding a couple of scribal
mistakes), it is probably al-Khwarizm1’s original table.

SHADOW LENGTH (cotangent)
(Suter 60, Neugebauer p. 105, Goldstein pp. 87-89)

From Ibn al-Muthanna’s commentary it becomes c]ear that the
calculation of the length of the shadow cast by a gnomon is extensively
described in al-Khwarizmi’s original z{j. However, no mention is made of
a table for this function. Ibn al-Muthanna states that al-Khwarizm1 took
the gnomon length equal to 12 units, in agreement with the cotangent table
in al-Majriti’s recension. Since many Islamic zfjes contained a cotangent
table for gnomon length 12, it is nevertheless possible that the table is a
later addition. In my opinion, the cotangent values in al-Majriti’s
recension were calculated independently from those in al-Battani’s zij and
the Toledan Tables.

TRUE SOLAR AND LUNAR MOTION
(Suter 61-66, Neugebauer pp. 57-63 and 105-107, Goldstein pp. 94-96, 104-109, 216-217
and 226-230.)

Suter (p. 90) showed that al-Majriti’s table for the true solar and
lunar motion and the apparent radii of the sun, moon and shadow agree
with the rules given in the Khandakhadyaka and Ibn al-Muthanna’s

commentary.

EQUATION OF TIME
(Suter 67-68, Neugebauer pp. 63-65 and 107-108)

In Ibn al-Muthanna’s commentary no mention is made of the
equation of time. Al-Hashimi presents a Ptolemaic description of the
calculation of the equation of time and states that the same method is used

' The same table is found in the Latin manuscript with tables for Newminster
mentioned in footnote 9; see Neugebauer & Schmidt 1952, p. 226.
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in the Shah Zjj and in the zfjes by al-Khwarizmi and Abii Ma‘shar (al-
Hashimi, pp. 156-157 and 279). He does not give parameter values or
other details of the method of computation and does not mention tables for
the equation of time in the above-mentioned works.

Al-Majritt’s recension of al-Khwarizmi’s z{j contains a table for
the equation of time with values to seconds of an hour for every degree
of solar longitude. From the instructions for the use of this table (Suter
p. 25; Neugebauer pp. 61-62) it follows that the argument of the table is
the true solar longitude and that the equation of time values must always
be added to mean solar time to obtain true solar time. The equation of
time as tabulated in al-Majrit’s recension is typically Ptolemaic; Indian
astronomers only corrected for the solar velocity component (cf. Section
5) and thus obtained a sine-wave instead of a function with four local
extreme values (cf. Figure 3). In Section 6 of this article the mathematical
structure and the underlying parameter values of the table for the equation
of time in al-Majrit’s recension will be determined.

MEAN OPPOSITIONS AND CONJUNCTIONS
(Suter 69-72, Neugebauer pp. 108-115, Goldstein pp. 94 and 216)

The tables for mean conjunctions and oppositions in al-Majriti’s
recension were computed for a length of the mean synodic month very
close to an Indian value reported by al-Birtini. Since the tables are based
on the Arabic calendar and are said to be for the geographical longitude
of Cordoba, they were probably modified by al-Majriti. The difference in
geographical longitude between the tables for mean oppositions and
conjunctions and those for mean motions is approximately 63°. This
signifies the first (implicit) occurrence of the so-calted "meridian of
water", which was used, in particular, by Andalusian and Western-
Maghribian geographers and astronomers (Comes 1992-1994, pp. 43-44).
The tables for mean oppositions and conjunctions in the Toledan Tables
are based on parameter values different from those used in al-Majriti’s
recension (Toomer 1968, pp. 78-81).

LUNAR ECLIPSES
(Suter 73-76, Neugebauer pp. 66-69 and 116-120, Goldstein pp. 109-120 and 231-235)

The organization of the eclipse tables in al-Majriti’s recension is
purely Ptolemaic. However, Neugebauer found that only the table for
lunar eclipses at apogee could be based on Ptolemaic parameter values;
the tables for the remaining three cases are based on the Indian value
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4°30' of the maximum lunar latitude. The lunar eclipse tables in
al-MajritT’s recension are identical to those in the Toledan Tables (Toomer
1968, pp. 91-93).

PARALLAX
(Suter 77-77a, Neugebauer pp. 69-76 and 121-126, Goldstein pp. 121-130 and 236-238)

The parallax tables and explanatory text in al-Majritl’s recension
derive from al-Khwarizm1’s original zif. Kennedy (1956b) showed that the
latitude component is in complete agreement with the parallax theory in
the Saryasiddhdnta. The longitude component contains Indian elements as
well (in particular the value 24° for the obliquity of the ecliptic), but was
computed using an iterative procedure described by Habash al-Hasib
(Baghdad, c. 830). -

SOLAR ECLIPSES
(Suter 78, Neugebauer pp. 73-76 and 126-128, Goldstein pp. 120-142 and 236-241)

See above under Lunar Eclipses.

EQUATION OF THE HOUSES
(Suter 79-90, Neugebauer pp. 78 and 128-129, Goldstein pp. 84-86 and 209-210)

Ibn al-Muthanna’s commentary describes the method by which the
equation of the houses can be computed, but does not mention the
presence in al-Khwarizm1’s original zjj of a table for that purpose. The
theory underlying the table in al-Majriti’s recension is Ptolemaic (Suter
pp. 96-98). The underlying parameter values are 23°35’ for the obliquity
of the ecliptic and approximately 38°43’ for the geographical latitude
(Toomer 1968, pp. 140-143). The table is thus probably an addition by
al-Majriti. The same table can be found in the Toledan Tables.

PROJECTION OF THE RAYS
(Suter 91-114, Neugebauer pp. 78-81 and 129-131)

The table for the projection of the rays from al-Khwarizmi’s
original z#j can be found in an astrological work by Ibn Hibinta (Kennedy
& Krikorian-Preisler 1972) and in the Toledan Tables (Toomer 1968,
pp. 147-151). Toomer found that the table was computed for obliquity
23°51’ and the latitude of Baghdad (close to 33°). The table for the
projection of the rays in al-MajritT’s recension is indicated to be for
geographical latitude 38°30’, i.e. probably for Cordoba. We can thus
conclude that it is an addition by al-Majriti. Hogendijk (1989) discussed
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the mathematical structure of both tables for the projection of the rays. He
found that al-Majriti’s table is based on al-Khwarizmi’s obliquity value
23°51’, but that it presents a significant improvement of al-Khwarizmi’s
method of computation.

EXCESS OF REVOLUTION
(Suter 115, Neugebauer pp. 131-132, Goldstein pp. 143-144 and 242)

The table for the excess of revolution in al-Majriti’s recension is
based on a sidereal year of 365;15,30,22,30 days." This value occurs
in various Indian sources, for instance in the Brahmasputasiddhdnta, and
is confirmed by Ibn al-Muthanna to have been used by al-Khwarizmi.
Note that the Shdh Zij uses the value 365;15,32,30 (Kennedy 1956a,
p. 147).

Summary ‘

With regard to their origin the tables in the Latin translation of
al-Majritt’s recension of al-Khwarizmi’s Sindhind Zij can be divided into
five groups (the numbers mentioned are the table numbers in Suter’s
edition published in 1914):

I. Tables deriving from al-Khwarizmi’s original zij:

A) based on Indian methods and / or parameter values:
1) Mean motion tables: motions and positions (4-20)
2) Lunar latitude (21-26 6°)
3) Planetary equations: structure (27-56 3°-5°)
4) Planetary latitudes (27-56 7°-8°)
5) True solar and lunar motion (61-66)
6) Lunar eclipses: parameter values for eclipses at apogee (73-76)
7) Parallax (77-77a)
8) Solar eclipses: parameter values (78)
9) Excess of revolution (115)

B) based on Persian methods and / or parameter values.
1) Solar equation (21-26 3°)
2) Lunar equation (21-26 4°)

'l Sexagesimal numbers will be written in the conventional ‘way: sexagesimal
digits are separated by a comma and the sexagesimal point is represented by a
semicolon. For example: 365;15,30 or 6,5;15,30 denotes 365 + 15/60 + 30/602.
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3) Planetary equations: parameter values (27-56 3°-5°)
C) based on Ptolemaic methods and / or parameter values.
1) Solar declination (21-26 5°)
2) Planetary stations (27-56 6°)
3) Right ascension (59-59b)
4) Lunar eclipses: organization and parameter values for eclipses at
perigee (73-76)
5) Solar eclipses: organization (78)

II: Tables modified by al-Majriti:
1) Chronological tables (1-3a)
2) Mean motion tables: epoch (4-20)
3) Mean conjunctions and oppositions (69-72)

II1: Tables added or replaced by al-Majriti:
1) Lunar crescent visibility (57a)
2) Sine (58-58a)
3) Cotangent (60)
4) Equation of the houses (79-90)
5) Projection of the rays (91-114)

Al-Khwarizm’s original table for lunar crescent visibility is extant
in various sources (see above for references). His sine values for kardajas
based on radius of the base circle 150 can be found in the Toledan Tables;
a sine table with arguments 1,2,3,...,90 based on these values was
reconstructed by Hogendijk. Al-Khwarizmi’s original table for the
projection of the rays has come down to us in a work by Ibn Hibinta and
in the Toledan Tables.

The table for the equation of time (67-68) belongs to one of the
groups I-C, II'or III. The analysis in Section 6 below will enable us to
make a more detailed statement about its origin.

5. The equation of time

If we want to measure local time by the solar position (for
example, by means of a sundial), we define noon as the time of the daily
culmination of the sun. The period of time between two consecutive
culminations can then be divided into 24 equal hours. In case the sun were
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Figure 1  Graphical explanation of the equation of time.

positioned in the plane of the equator and moved with a uniform apparent
velocity, the arc of the equator which crosses the meridian of the observer
between each two consecutive culminations would be the same all through
the year, namely 360° plus the daily solar motion. Consequently, each
day and each hour would have precisely the same length. The time
obtained on the basis of the assumption that the sun moves at a uniform
speed in the plane of the equator is called local mean solar time; it differs
at most a constant amount from the time that we use today. Ancient and
medieval astronomers used mean solar time for the calculation of
planetary longitudes: they applied corrections to the so-called mean
planetary longitudes, which were linear functions of time and could
therefore be determined by multiplying the mean solar time elapsed by the
average planetary motion.

Since in reality the sun moves in the plane of the ecliptic with a
non-uniform velocity, local true solar time, which is defined by the daily
culmination of the frue sun, differs a variable quantity from mean solar
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time. The difference between true and mean solar time is called the
equation of time (in Arabic: ta‘dil al-ayyam bi-layali-ha; in Latin: equatio
dierum cum noctibus suis). It is determined by two factors: the
non-uniformity of the solar motion, and the fact that normally an arc of
the ecliptic does not cross the meridian of the observer in the same period
of time as an equatorial arc of the same length.

We will now define mean and true solar time mathematically and
will derive a formula for the equation of time as a function of the solar
position.’? First note that the hour angle of a heavenly body X is the
spherical angle between the meridian of the observer and the meridian of
X, measured in westward direction. By S I will denote the true sun; by M
the virtual equatorial mean sun, which moves on the equator at a constant
speed with the same period as the true sun.

Now mean solar time can be defined as the hour angle A2(M) of the
equatorial mean sun, true solar time as the hour angle A(S) of the true sun.
The equation of time E, expressed in equatorial degrees is the difference
between true and mean solar time (cf. Figure 1, which depicts the
heavenly sphere; the earth, located in the centre of the sphere, has not
been indicated):

E, = h® - hM). (1)

In order to express E; as a function of the solar position, we now consider
the Ptolemaic eccentric solar model, which was used by most medieval
astronomers (see Figure 2).” In this model the true sun § moves at a
constant speed on a circle with radius 60, which lies in the plane of the
ecliptic. The centre C of this circle is a distance e, called the solar
eccentricity, removed from the Earth E. The sun reaches its largest
distance from the Earth at the apogee A, its smallest distance at the

2 Extensive descriptions of the equation of time as used by Ptolemy can be found
in Neugebauer 1975, vol. 1, pp. 61-68 and Pedersen 1974, pp. 154-158. The
methods by which the Islamic astronomers Kiishyar ibn Labban (10th century) and
al-Kashi (15th century) computed their tables for the equation of time were explained
in Kennedy 1988. ’

* More extensive explanations of the Ptolemaic solar model can be found in
Neugebauer 1975, vol. 1, pp. 53-61 or Pedersen 1974, pp. 144-154.
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1)

Figure 2 The Prolemaic solar model.

perigee P. Now the true solar longitude \ is defined as the angle A TES,
measured in eastward direction from the vernal point T, under which the
sun is seen from the Earth (in order to keep Figure 2 as clear as possible
I have not indicated A in it). In the following calculations we will also
make use of the true solar anomaly a, which is defined by the angle
A AES between the apogee A and the sun S. We have A = a + A, ,
where A, is the longitude of the solar apogee, given by the angle A TFA.

In order to calculate the true solar position A, we will apply a
trigonometrically computed correction to a linear function of time. For
this function we can, for instance, take the mean solar anomaly a,, which
is the angle A ACS between the apogee and the sun as seen from the
centre C of the eccentric solar orbit. Since the sun moves at a uniform
speed around C, this function is in fact linear, However, ancient and
medieval astronomers usually tabulated a different function, namely the
mean solar longitude \_,, which is defined by A, = a,, + A, (for the same
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reason as above, A, has not been indicated in Figure 2).

_ Since the sum of the angles in triangle ECS is now a +
(180° —a,) + A ESC, it follows that the difference between the true solar
anomaly a and the mean solar anomaly a, (and hence the difference
between the true solar longitude A and the mean solar longitude A ) equals
the angle A ESC. This angle is called the solar equation and will be
denoted by g. It can be determined geometrically as a function of a, by
extending the triangle SCE to a right-angled triangle SXE (not indicated
in the figure) and then expressing the sine or the tangent of the angle ¢ in
terms of the sides of the extended triangle. This yields:

q™ (@™) = arctan (e *sina™/ (60 + e -cos a™)) (2)

where g, denotes the solar equation as a function of the mean solar
anomaly (the equivalent formula based on an expression for sin g, is
somewhat more complicated). For a, between 0° and 180° the solar
equation must be subtracted from the mean solar anomaly (or longitude)
in order to obtain the true solar anomaly (or longitude); for a, between
180° and 360° medieval astronomers added the absolute value of the solar
equation to the mean solar anomaly (or longitude). Since our formula
yields a negative equation for values of a,, between 180° and 360°, we
can write in general a = a, — ¢,(@.) or A = N\, — ¢u(An — M),

The solar equation can also be expressed as a function of the true
solar anomaly and will then be denoted by q. By applying the sine law to
triangle SCE we find

q(a) = arcsin (e -sina /60), (3)

and we have a = a, — q(@) or A = A, — g(A — \,) for all values of
a and A

Now we can return to figure 1. We first note that both the mean
solar longitude A, and the position of the equatorial mean sun M on the
equator are linear functions of time. Since the equatorial mean sun has the
same period as the true sun (namely a solar year), it follows that at any
time the position of the equatorial mean sun M on the equator can be
expressed as N, + ¢ for a certain constant c. Because the right ascension
of a heavenly body X is the spherical angle between the meridian through
the vernal point T and the meridian of X measured in eastward direction,
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it follows from formula 1 that at any time the equation of time equals the
difference in the right ascension of the equatorial mean sun and the true
sun. Thus we have:

Eg = N — o) + g

where « denotes the right ascension. For values of A between 0° and 90°
a can be calculated from «(\) = arctan (cos € -tan A), where € denotes
the obliquity of the ecliptic. For values between 90° and 360° o« follows
from the symmetry relations «(180—\) = 180 — a(\) and «(180+X\)
= 180 + (). The constant ¢ determines the synchronization of the true
sun and the virtual equatorial mean sun. Since ancient and medieval
astronomers often determined this constant in such a way that it depended
on the epoch (i.e. the starting point) of their planetary tables, I will call
it the epoch constant.

In the above formula the equation of time E, is expressed in
equatorial degrees. However, in Ptolemy’s Handy Tables and in most
medieval astronomical handbooks (including al-MajritT’s recension of al-
Khwarizmi’s zfj) the equation of time was tabulated in hours, minutes and
possibly seconds. Since 24 hours correspond to one daily rotation of 360°
plus the daily solar motion of approximately 0°59’'8”, an accurate factor
for the conversion from degrees to hours would be (360° +
0°59'8”) / 24 = 15°2'28" per hour. However, Ptolemy and many
medieval astronomers neglected the daily solar motion and used the factor
15°/ hour instead. Thus if E, denotes the equation of time expressed in
hours, we often have E, = 1/15 - E,. From now on I will write E instead
of E,, since we will only be dealing with the equation of time expressed
in hours,

Like the solar equation, the equation of time can be expressed
both as a function of the true solar longitude (denoted by E(A) ) and as a
function of the mean solar longitude (denoted by E_(\,) ). From the
above we find

EQ) = VIS (AN+gA—=A) —ald) +¢) (4)
and

E,(\) = UIS- (A = a( A = gulhw = N)) +¢) (5)

respectively.
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Figure 3 al-Khwarizmi's values for the equation of time

(horizontally: the solar longitude in ecliptical degrées,
vertically: the equation of time in hours).

We have thus seen that the equation of time is based on five
different parameters: the obliquity of the ecliptic, the solar eccentricity,
the longitude of the solar apogee, the epoch constant and the conversion
factor. Many medieval astronomers included in their handbooks a table for
the equation of time, very often without an indication of the underlying
parameter values. Furthermore it was not always clear whether the
equation of time was tabulated as a function of the mean or the true solar
longitude (i.e. whether the argument or independent variable of the table
was the mean or true solar longitude); in both cases a plot of the tabular
values would have the general shape shown in Figure 3 (here the solar
longitude has been plotted horizontally, the equation of time in hours
vertically).

We can conclude that the analysis of a table for the equation of
time is often a difficult matter. Until now only very few tables for the
equation of time in ancient and medieval sources have been
mathematically explained. Kennedy (1988) recomputed the tables for the
equation of time found in the zfjes of Kushyar ibn Labban and al-Kashr.
In a recent article (van Dalen 1994) I have described a number of methods
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which can be used to analyse tables for the equation of time and have
explained in which way Ptolemy computed his table for the equation of
time. In this article I will apply similar methods to determine the
mathematical structure of al-Khwarizmi’s table and will explain the
application of the method of least squares in detail.

6. Analysis of al-Khwdrizm{’s table for the equation of time

DESCRIPTION OF THE TABLE.

A complete transcription of the table for the equation of time in
the Latin recension of al-Khwarizmi’s Sindhind Zij can be found in Suter
1914, pp. 181-182 (Tables 67-68). The table is available in two of the
manuscripts mentioned in Section 3 of this article: on folios 80"-80" of
Chartres Bibliotheque Publique No. 214 (Suter’s manuscript C) and on
folios 137-137" of Oxford Bodleian Library Cod. Auct. F.I. 9 (O). Suter
combined the two versions in order to obtain a table which is probably as
close as possible to al-Khwarizm1’s original table. He found that the two
versions have only very few scribal errors in common.

The values of al-Khwirizm1’s table for the equation of time are
given in minutes and seconds of an hour for every degree of solar
longitude starting from Aries. The minimum value is assumed when the
solar position is 22° Aquarius and amounts to 0"0™0". This implies that the
user of the table did not have to distinguish the cases where the tabular
values are additive ("positive") and where they are subtractive
("negative"). Apparently the author of the table chose his epoch constant
¢ especially in order to obtain this property (cf. the technical explanation
in the previous section).

For the following analysis I have used the values given by Suter
(see Tables 4a to 4c at the end of this section), a plot of which is shown
in Figure 3. The scarce information about the equation of time in al-
Khwarizmt’s original zij which can be found in other primary sources has
been summarized in the paragraph "Equation of time" of Section 4.

CONVERSION FACTOR.

During a first inspection of al-Khwarizm’s table for the equation
of time it can be noted that practically all tabular values are multiples of
four seconds. The only exceptions occur in the neighibourhood of the
(local and global) minimum and maximum values of the table. It seems
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reasonable to assume that also in those regions the values were originally
multiples of four seconds, but that they were adjusted in order to avoid
obvious jumps in the tabular values.

The presence of mere multiples of 4 seconds can be explained
from formulas 4 and 5 for the equation of time: the last step of the
calculation is in both cases the division by the conversion factor, which
was usually taken equal to 15°/ hour, sometimes to 15°2'28"/ hour.
Apparently the author of the table in al-Majriti’s recension calculated the
equation of time to an accuracy of equatorial minutes, i.e. his values for

A+ gh—AN) — aN) + ¢

(or A, — a( Ag—q.(An.—Ay) ) + c in case the argument of the table
was the mean solar longitude) were all multiples of 60 seconds. By
dividing by the conversion factor 15 he then obtained tabular values for
the equation of time expressed in hours which were all multiples of 4
seconds.

INDEPENDENT VARIABLE.

From the explanatory text in al-Majriti’s recension of
al-Khwarizmi’s z§j (Suter 1914, p. 25; Neugebauer 1962, pp. 61-62) it
follows that the independent variable of the table for the equation of time
is the true solar position. Furthermore, the equation found must always
be subtracted from true solar time to obtain mean solar time; thus the
tabular values equal true solar time minus mean solar time as in formula
1.

The second fact can easily be verified from the tabular values:
whenever we compute the equation of time by subtracting mean solar time
from true solar time, the resulting function has, for a solar position
running from 0° to 360°, a local maximum, a local minimum, a global
maximum, and a global minimum respectively. As can be seen from
Figure 3 (or from Figure 32 in Neugebauer 1962, p. 108) this is in fact
the case for the table for the equation of time in al-Majriti’s recension.'

' Ptolemy’s table for the equation of time in the Handy Tables is an example of
a table of which the tabular values must always be added to true solar time in order
to obtain mean solar time (cf. Neugebauer 1975, vol. 2, pp. 984-986).
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There is no easy way to verify the independent variable of a table
for the equation of time: both as a function of the true solar longitude and
as a function of the mean solar longitude the equation of time has the
form shown in Figure 3. We can, however, derive a number of properties
of a table for the equation of time as a function of the true solar longitude
which do not hold if the independent variable is the mean solar longitude
and which could thus be used to investigate which independent variable
was used in al-MajritT’s table. In particular, using symmetry relations
satisfied by the right ascension and the solar equation we can reconstruct
these functions from a given table for the equation of time as a function
of the true solar longitude. '

RECONSTRUCTION OF THE UNDERLYING RIGHT ASCENSION AND SOLAR
EQUATION,

As we have seen in the technical explanation in Section 5, the
equation of time is built up from two components, the right ascension and
the solar equation. Both components satisfy a number of symmetry
relations, In particular, we have for the right ascension o

a(180—\) = 180 — a(d) and  «(180+N) = 180 + a(N)

for every value of A. These formulae state mathematically that, for
instance, the rising time at sphaera recta of Aries, which can be calculated
as a(30) — a(0), is equal to that of Virgo ( «(180) — a(150) ) and to
that of Libra ( «(210) — «(180) ).

For the solar equation as a function of the true solar longitude we
have ‘

gAs+a) = — g\s—a) and g\, +180+a) = — g\ +a)

for every value of the true solar anomaly a. Here A, is the longitude of
the solar apogee and @ = N\ — A,, as in the description of the solar model
in Section 5. These formulae state mathematically that the absolute value
of the solar equation only depends on the distance of the sun from either
apogee or perigee, the sign of the equation being different on the two
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sides of the line connecting apogee and perigee."

From the symmetry relations satisfied by the right ascension and
the solar equation we can derive relations between certain values for the
equation of time as a function of the true solar longitude. First note that,
for every value of A\, EQ\) = 1/15 - (AN + gA—\) — o) + ¢ )
(formula 4) and
E(180+\) 1/15 - (180 + X + g(180+A—X\,) — a(180+X) + ¢)
1/15 - (180 + A — gA—X,) — 180 — a(\) + ¢)
/15 - A — gA—A) — a(\) + o). (6)

o

Therefore, by adding two values for the equation of time for arguments
180° apart, we obtain:

E(\) + E(180+X)

I

115 (X + gA=\) — ad) + ¢ +
A= gA—=N) —ad) +¢)
1/15 + (2\ - 2a(\) + 2¢), .

from which we find:
a\) = ’)\ +c—T% -(EMN) + E(180+N) ). (7)

Thus we can reconstruct the right ascension underlying a given table for
the equation of time as a function of the true solar longitude, provided that
we know the value of ¢ (or have a good approximation for it).

By subtracting two values for the equation of time for arguments

~ 180° apart, we can in a similar way reconstruct the underlying solar

equation. We have:

EN) — E(180+)N)

/15 - (XN + gA—A\) — a\) + ¢
=N+ gA=N) + (M) — 0
V15 - (2 - qA—20) ),

'* The solar equation as a function of the mean solar longitude only satisfies a
symmetry relation similar to the first of the relations above, namely g,(A +a,) =
—gn(A\a—ay), wWhere a is the mean solar anomaly (g, = A\;— M.
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leading to

gA—A) = 7% < (EN) — E(180+)\) ). (8)

Thus we can reconstruct the solar equation underlying a table for the
equation of time as a function of the true solar longitude even if no value
of the epoch constant c is available.

Neither the formulae derived here nor similar formulae hold for
the equation of time as a function of the mean solar longitude. Since in
formula 5 the solar equation g, occurs "within" the right ascension (in the
term o\, — g.(\.—A\)) ), thé terms will not cancel out so nicely
regardless which equation of time values we add or subtract.

Assuming that al-Khwarizmi’s table presents the equation of time
as a function of the true solar longitude, we can now reconstruct the
underlying solar equation using formula 8. I found that the resulting
values are close to solar equation values computed for Ptolemy’s solar
eccentricity 2;30 and a longitude of the apogee in the neighbourhood of
84°40’, which, as far as I know, is not attested. If the independent
variable of al-Khwarizmi’s table were the mean solar longitude, the
reconstructed table would have shown systematic divergences from solar
equation tables computed for any values of the eccentricity and the
longitude of the apogee. Therefore we can conclude that the independent
variable is not the mean solar longitude. More evidence for this
conclusion could be found by reconstructing the right ascension underlying
al-Khwarizmi’s table for the equation of time using formula 7. In order
to do that, we first have to find an approximation for the epoch
constant c.

APPROXIMATION OF THE EPOCH CONSTANT C. ,

The epoch constant ¢ can be approximated from the values of a
table for the equation of time as a function of the true solar longitude by
once again applying the symmetry relations satisfied by the right ascension
and the solar equation. For every value of A we have

E(180-))

1/15 - (180 — X + g(180—A—X\,) — «(180—)\) + ¢)
1/15 - (180 — A — g(=A—\) — 180 + &(\) + ¢)
115 - ( =X = g(=A=\) + a(\) + ¢) (9)
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and
E (360—X\) 1/15 - (360 — N + g(360—A—\) — a(360—N) + ¢)

1/15 - (360 — X + g( 180+(180—N) =\, )
~ o 180+(180—=N) ) + ©)
1/15 - (360 — N — g(180—A—\,)
— 180 — «(180—\) + ¢)
1/15 - (360 — A + g(=A=\,) — 360 + a(A) + ¢)
115 - ( =\ + g(=A=\) + a(\) + ¢). (10)

Using formulae 4, 6, 9 and 10, we can now show that for any value of
the true solar longitude A the sum of the four equation of time values for
arguments A, 180—A, 180+ and 360X is constant;

EQ\) + E(180—X) + E(180+)\) + E(360—\) =
= 115 (X + gA=\) — aQ\) + ¢ ) +
115 - ( =\ + q(180—A—=\,) + a(\) + ¢) +
115 - (A = gA=\) — aA) + ¢) +
115 - ( =\ — g(180—A=\,) + aQ\) + ¢)
= 1/15 - (40)
= 4/15 -c.

If we have a total of n values for the equation of time, where 7 is a
multiple of 4 and the corresponding arguments are 360°/n, 2:360°/n,
..., 360°, we can build n/4 groups of four values of which the sum equals
4/15-¢.’ As a result, the sum of all available values for the equation
of time equals n/4- (4/15- ¢). This implies that

' For A=0° and A\=90° we obtain only two values. However, we have
E©) + E(90) + E(180) + EQ270) =
=115 -(q0—A) + ¢) + 1/15 - (90 + g(90—Ay) — 90 + ¢) +
1/15 - (180 — q(0—XA,) + ¢ ) + 1/15 - (270 — g(30—\N) — 270 + ¢)
= 4/15 - c.
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n
c = (15/n) - Y E(i360°/n) (11)
i=1

Again, this formula does not hold for the equation of time as a function
of the mean solar longitude. However, with a large computational effort
it can be shown that for the equation of time as a function of the mean
solar longitude formula 11 holds at least approximately, i.e. we have

n
¢ = (15/n) - Y. E,(i360°/n)
i=1

where n is again the total number of tabular values.

Neither for the reconstruction of the underlying right ascension
and solar equation tables (formulae 7 and 8) nor for the approximation of
the epoch constant ¢ (formula 11) will we in practice be able to use the
exact values E(\) for the equation of time. Instead we will have to use
tabular values 7(A) which were rounded to a fixed number of sexagesimal
digits. These tabular values contain at least rounding errors, which are
relatively small. (For instance, the differences between exact functional
values and values rounded to seconds are half a second at most).
Furthermore, they could contain relatively large errors like computational
errors or scribal mistakes. Nevertheless, in most cases formula 11 (with
E replaced by T) will give us a good approximation for c.

In the case of al-Khwarizmi’s table for the equation of time the
application of formula 11 leads to ¢ = 4;30,3. As was shown above,
al-Khwarizmi computed X + g(A—\,) — a(}) + c to an accuracy of
minutes. Furthermore, he apparently chose the epoch constant in such a
way that the minimum value of his equation of time became zero. It
therefore seems natural to assume that his epoch constant also had an
accuracy of minutes. In that case, the value he used was probably ¢ =
4;30.
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reconstructed reconstructed
A right ascension differences A right ascension differences
0 0;10, O 0;10, O 90 89,48,30 —0;11,30
10 9;20, 0 0;10,20 100 100;44,30 -0;10,14
20 18;33,30 0; 8,47 110 111333, 0 -0; 9, 1
30 27;56,30 0; 6,20 120 122;11, O —0; 4,45
40 37;33,30 0; 3,14 130 132;30,30 -0; 1,35
50 47,27, © -0; 0,55 140 142;31,45 0;2,1
60 57;38,30 —0; 5,45 150 152;15,30 0; 5,40
70 68; 9,30 -0; 8,29 160 161;43, 0 0; 7,43
80 78:55,30 0; 9,46 170 171; 0, O 0; 9,40

Table 1  Right ascension reconstructed from al-Khwdarizmi’s table for
the equation of time under the assumption that the independent variable
is the true solar longitude. The 3rd and 6th columns display the
differences between the reconstructed values and accurate right ascension
values for obliquity 23°51".

Assuming that the argument of al-Khwarizmi’s table for the
equation of time is the true solar longitude and that the epoch constant
used was 4;30, we can now reconstruct the underlying right ascension
using formula 7. A selection of the resuiting values is shown in Table 1
together with the differences between these values and values recomputed
for al-Khwarizm1’s obliquity value 23°51’. It turns out that the agreement
is very bad indeed. Elementary properties of the right ascension such as
a(0)=0 and «(90)=90 are not satisfied by the reconstructed values and
we find differences up to 12’ which display an obvious pattern'’ and
hence are probably caused by a systematic error in our reconstruction (cf.
the explanation of the method of least squares below). It can be checked
that this error does not lie in our values of the epoch constant and the
obliquity of the ecliptic: for no values of these parameters will the pattern
in the differences in Table 1 disappear. We must therefore conclude that
the argument of al-Khwarizmi’s table is not the true solar longitude.

Since we concluded from the good agreement of the reconstructed
solar equation with recomputed values that the argument of

""The differences show a clear sine-wave pattern. They are practically zero for
A=45° and A=135°, reach a maximum of approximately 11’ in the neighbourhood
of 0° and 180° and a minimum of approximately —12’ around 90°.
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al-Khwarizm?’s table for the equation of time is not the mean solar
longitude either, we have to consider the possibility that the equation of
time was tabulated by methods different from those presented in Section
5. A powerful mathematical tool which can be used to determine multiple
unknown parameter values from an astronomical table and to find more
information about the tabulated function, is the method of least squares.
In the following pages this method will be explained in detail.

METHOD OF LEAST SQUARES.

The use of the method of least squares for the determination of the
parameter values underlying a given astronomical table will be illustrated
by means of Table 2. The 1st column of this table contains arguments A
of a table for the equation of time, the 2nd column tabular values T(\),
in this case taken from al-Majriti’s recension of al-Khwarizm1’s zij. The
3rd column contains equation of time values E(\) computed for a
historically plausible set of parameter values, namely obliquity 23°51’,
solar eccentricity 2;20 (corresponding to al-Khwarizmi’s maximum
equation 2°14"), solar apogee 77°55' (as given by al-Majriti), epoch
constant 4°30" (found above) and conversion factor 15, under the
assumption that the independent variable is the true solar longitude. The
4th column contains the differences T{A\)—E(\) between al-Majriti’s
tabular values and our computation, the 5th column the squares of these
differences. The sum of the squares (taken over all tabular values present
in al-Majritt’s recension) is indicated at the end of the table.

From the 4th column of Table 2 it can be seen as follows that
either our assumption that al-Khwarizmi’s table has the true solar
longitude as its independent variable or the chosen parameter values are
incorrect. Normally, when we recompute a medieval astronomical table
using the correct formula and parameter values, we find differences which
have more or less random values and a maximum size of at most a couple
of units of the final sexagesimal position. An example of such randomly
distributed differences is shown in Figure 4, where the solar position has
been plotted horizontally and the differences (each indicated by a dot)
vertically. In the 4th column of Table 2 we not only find differences up
to 100 units (namely 1'44"), but in a plot of these differences (Figure 5)
we can also clearly recognize a non-random pattern, which has more or
less the shape of the equation of time itself (cf. Figure 3). The
presence of such patterns in the differences usually points to the use of an
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arg. TN EN differences squares of the
N (al-Majrity) (computed) TN~EN differences
10 0;11,28 0;13, 5,40,24, 1 —=0; 1,37,40,24, 1 0; 0, 2,39, 0, 5
20 0;15, 8 0;16,47,55,48,54 -0; 1,39,55,48,54 0; 0, 2,46,26, 3
30 0;18,28 0,20, 2,21,52,44 ~0; 1,34,21,52,44 | 0; 0, 2,28,24,41
40 0;21, 4 0;22,30,18,57, 8 -0; 1,26,18,57, 8 0;-0, 2, 4,10,26
50 0;22,48 0;23,57,55,18,24 —-0; 1, 9,55,18,24 0; 0, 1,21,29, 3
60 0;23,28 0;24,18,27,17,28 -0; 0,50,27,17,28 0; 0, 0,42,25,42
70 0;23, 0 0;23,34,23,43,45 ~0; 0,34,23,43,45 0; 0, 0,19,43, 3
80 0;21,32 0;21,58,21,35,23 -0; 0,26,21,35,23 0; 0, 0,11,34,50
90 0;19,40 0;19,51,56,41,35 —-0; 0,11,56,41,35 0; 0, 0, 2,22,41
100 0;17,32 0;17,42, 7,59,49 -0; 0,10, 7,59,49 0; 0, 0, 1,42,41
110 0;15,52 0;15,56, 0,34,33 —-0; 0, 4, 0,34,33 0; 0, 0, 0,16, §
120 0;14,44 0;14,55,28,26, 2 -0; 0,11,28,26, 2 0; 0, 0, 2,i1,39
130 0;14,44 0;14,53,38,17,34 -0; 0, 9,38,17,34 0; 0, 0, 1,32,54
140 0;15,44 0;15,53,39,28,19 —-0; 0, 9,39,28,19 0; 0, 0, 1,33,16
150 0;17,36 0;17,49,38,24,14 -~0; 0,13,38,24,14 0;0,0,3,6,3
160 0;20,24 0;20,28,41,33,54 —-0; 0, 4,41,33,54 0, 0,0, 0,22, 1
170 0;23,32 0;23,33,13,53,43 -0; 0, 1,13,53,43 g, 0, 0, 0, 1,31
180 0;26,52 0;26,43, 2,19, 9 0; 0, 8,57,40,51 0; 0, 0, 1,20,18
190 0;29,52 0;29,36,56,49,11 0; 0,15, 3,10,49 0; 0, 0, 3,46,36
200 0;32,24 0;31,54,16,28, 2 0; 0,29,43,31,58 0; 0, 0,14,43,36
210 0;34, 0 0;33,16,14,32,26 0; 0,43,45,27,34 0; 0, 0,31,54,44
220 0;34,28 0;33,27,36,53,53 0; 1, 0,23, 6, 7 0; 0, 1, 0,46,21
230 0;33,36 0;32,18,41, 6,52 0; 1,17,18,53, 8 0; 0, 1,39,37,34
240 0;31,24 0;29,47,28,59,23 0; 1,36,31, 0,37 0; 0, 2,35,15,30
250 0;27,44 0;26, 1,42,15, 8 0; 1,42,17,44,52 0; 0, 2,54,24,26
260 0;23, 4 0;21,19,28,46,11 0; 1,44,31,13,49 0; 0,3, 2, 432
270 0;17,52 0;16, 8, 3,18,25 0; 1,43,56,41,35 0; 0, 3, 0, 4,32
280 0;12,32 0;11, 0, 1,38,37 0; 1,31,58,21,23 0; 0, 2,20,58,58
290 0; 7,44 0; 6,27,53,26,34 0; 1,16, 6,33,26 0; 0, 1,36,32,37
300 0; 3,48 0; 2,58,35,17, 8 0; 0,49,24,42,52 0; 0, 0,40,41,32
310 0; 1,12 0; 0,49,45,17,10 0; 0,22,14,42,50 0; 0, 0, 8,14,51
320 0,0, 2 0; 0, 8,24,40,40 —0; 0, 6,24,40,40 0; 0, 0, 0,41, 6
“330 0; 0,20 0; 0,51,45,10,37 -0; 0,31,45,10,37 0; 0, 0,16,48,15
340 0; 1,52 0; 2,49, 6, 9,10 -0; 0,57, 6, 9,10 0, 0, 0,54,20,42
350 0; 4,28 0; 5,44, 8,53, 6 -0; 1,16, 8,53, 6 0; 0, 1,36,38,32
360 0; 7,48 0; 9,16,57,40,51 -0; 1,28,57,40,51 0; 0, 2,11,54, 7
SUM OF THE SQUARES OF THE DIFFERENCES: 0; 6,18,43,18, 0

Table 2 [lustration of the method of least squares

incorrect formula or incorrect parameter values for the computation.

In order to find the values of the underlying parameters which
yield the best agreement with the given table for the equation of time, we
can now use the method of least squares. The 5th column of table 2
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contains the squares of the differences in the 4th column; in the bottom
row we find the sum of these squares over all tabular values present in
al-Majritl’s recension (of these values only every tenth is displayed in
Table 2). If we use different sets of parameter values for the computation
in the 3rd column, then the differences in the 4th column, the squares of
the differences in the 5th column, and the sum of the squares will all be
different. According to the method of least squares, the parameter values
are determined in such a way that the sum of the squares of the
differences between al-Majriii’s table and the computed table is as small
as possible. Expressed mathematically, the parameter values are
determined by minimizing the sum

X, (TO) - EN )

which is taken over all values of \ for which tabular values are available.
Since squares are positive, the sum of the squares of the difterences can
only be small if the absolute value of all differences is small, i.e. if all
computed values are close to the given tabular values.

Instead of the sum of the squares of the differences we will mostly
use the so-called standard deviation of the differences. The standard
deviation is calculated by dividing the sum of the squares of the
differences by the total number of tabular values and taking the square
root of the quotient, i.e. the standard deviation is the square root of the
average squared difference.'® The standard deviation is a popular
measure for the size of the differences between any two sets of
comparable values. In our example in Table 2 the mean square of the
differences is approximately 0;0,1,3,7,13 (namely 0;6,18,43,18 / 360),
and the standard deviation 0;1,1,32,25. We will see below that if we
recompute a table with values to seconds using the correct formula and
parameter values, the standard deviation of the differences between tabular
values and computed values is approximately 0;0,0,17. Thus for
‘our recomputation of al-Majrit’s table the standard deviation of the

"®For statistical purposes the standard deviation is usually calculated by dividing
the sum of the squares of the differences by n—1, where n is the total number of
tabular values, and taking the square root. In this way the standard deviation yields
a better approximation to one of the parameters describing the statistical properties
of the differences.
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Figure 4 Random differences between equation of time values
to seconds and recomputed values (horizontally: the solar
longitude, vertically. the differences in hours).
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Figure 5  Differences between al-Khwarizmi’s values for the
equation of time and our recomputation in Table 2.
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differences is more than 200 times larger than for a correct recomputation.

It is a complicated numerical problem to determine the parameter
values for which the sum of the squares of the differences between a given
historical table and a computed table (and hence the standard deviation of
these differences) is as small as possible. Usually one has to use an
iterative method, which starts with plausible parameter values (such as the
ones that we used for our computation in Table 2) and then computes
from these values other values for which the sum of the squares of the
differences is smaller. Such a computation usually involves the differences
between the given table and the table computed for the initial parameter
values and the so-called derivative of the tabulated function, which
supplies information about the speed at which the sum of the squares of
the differences changes if the individual parameter values are changed.
After a number of repetitions of this procedure (usually only three or
four) we obtain a very good approximation to the parameter values for
which the sum of the squares of the differences between the given table
and a computed table is as small as possible. The values found will be
called the least squares estimates of the parameters underlying the given
table.

In my computer program TA (Table-Analysis) the method of least
squares can be applied to determine the underlying parameter values of
most of the standard Ptolemaic astronomical tables. The iterative process
used by the program is the so-called method of Gauss-Newton, which
turns out to give very good results for our purpose. The user of TA need
not know any details of the iterative process; he merely indicates which
parameter values he wants to estimate from which table. However, the
interpretation of the results of the method of least squares is non-trivial
and will be discussed in the following section.

INTERPRETATION OF THE RESULTS OF THE METHOD OF LEAST SQUARES.
The method of least squares produces accurate approximations to
the unknown parameter values of a given astronomical table provided that
the correct underlying function is used. This implies in the first place that
we have to know for which function the given table was computed; for
instance, a planetary equation could have been determined according to
the method of sines or to the method of declinations (cf. footnote 6). In
the second place it is sometimes important to know the éxact method of
computation of the table: if the computation involves sources of systematic
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error, such as linear interpolation, severe truncation of intermediate results
and the use of inaccurate auxiliary tables, the results of the method of
least squares could be invalid. In order to decide whether the results are
valid the following three criterions should be applied:

1) The standard deviation of the differences between the given
historical table and a table computed for the least squares estimates of the
underlying parameters should be reasonably small." First note that we
cannot expect this standard deviation to be equal to zero. Even if we had
chosen the correct underlying function and parameter values for our
recomputation of al-Khwarizmi’s table for the equation of time in Table
2, the tabular values in the 2nd column would have been rounded versions
of the exact values in the 3rd column and the differences in the 4th
column would have been between —0;0,0,30 and +0;0,0,30. It can be
shown statistically that in that case the standard deviation of the
differences between the exact and the rounded values is approximately
0,0,0,17.%

As a result the standard deviation of the differences between a
given historical table with values to seconds and a table computed for the
least squares estimates of the underlying parameters will normally not be
smaller than 0;0,0,17. If the standard deviation is much larger than
0;0,0,17, we have to consider the possibility that we have chosen an
incorrect underlying function.

2) The differences between the given historical table and a
computation based on the least squares estimates of the underlying
parameters should be random and not display obvious patterns. 1f the
differences display sine-wave or other regular patterns, we can be certain

“Bear in mind that this standard deviation is the smallest possible for all sets of
parameter values.

The differences between correctly rounded tabular values and exactly calculated
functional values can be assumed to have a so-called uniform probability distribution.
If the tabular values were calculated to seconds, this implies that all possible digits
occur approximately equally often in the third sexagesimal fractional position of the
calculated functional values. The expected standard deviation of such uniformly
distributed differences can be calculated as approximately 0;0,0,17. If the tabular
values were calculated to minutes, the expected standard deviation would be
approximately 0;0,17, etc.
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that we have used an incorrect underlying function or that we have
neglected aspects of the computation of the table which caused systematic
errors in the tabular values.?! If the differences seem to be random, we
have probably chosen the correct underlying function even if the standard
deviation of the differences is large. Examples of differences with obvious
patterns can be found in Figures 5, 6 and 7; an example of random
differences is shown in Figure 4.

3) The least squares estimates should be (close to) historically
plausible values for the parameters. In practice there is only a limited
number of possibilities for the values of the underlying parameters of a
given historical table. These are either values attested in historical sources
(like Ptolemy’s value 23°51'20" for the obliquity of the ecliptic and al-
Battani’s 2;4,45 for the solar eccentricity) or round numbers (like al-
Khwarizmi’s value 4°30’ for the epoch constant, which we found above).
If the least squares estimates are far removed from historically plausible
parameter values, we have probably chosen an incorrect underlying
function.

CONFIDENCE INTERVALS,

Even if we have chosen the correct underlying function, the least
squares estimates of the parameters of a given astronomical table are
normally not identical with the parameter values actually used for the
computation. Those values are usually round numbers (see above),
whereas the least squares estimates are numerically determined quantities
which could in principle have any value; for example, 23;34,59,45,18,6
for the obliquity or 2;4,45,17,23,15 for the solar eccentricity.” After

*'Note that before we applied the method of least squares in our example in Table
2 obvious patterns in the differences had two possible causes: an incorrect underlying
function or incorrect values of the underlying parameters. Since we now consider the
differences between the given table and a computation based on the least squares
estimates of the parameters, which were determined in such a way that the
differences are minimized, we can be certain that the cause of the patterns is an
incorrect underlying function.

“The reason that the least squares estimates are not normally’;éq_ual to the actual
historical parameter values is that the tabular values contain rounding and possibly
other types of errors. Even if we would use exact functional values for the
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applying the method of least squares we thus have to find historically
plausible, round numbers in the neighbourhood of the estimates in such
a way that the standard deviation of the differences between the given
table and a recomputation for the historical values is only slightly larger
than the standard deviation for the least squares estimates. The decision
how far the historically plausible values can be removed from the least
squares estimates can be made on the basis of so-called 95 % confidence
intervals for the underlying parameters. These are statistically determined
intervals around the least squares estimates which are expected to contain
the parameter values used for the computation in 19 out of 20 cases.

For example, if we find a 95 % confidence interval {23;34,57,
23;35,6 ) for the obliquity of the ecliptic, we can safely conclude that the
underlying parameter value is 23°35’, since this is the only historically
plausible value in the neighbourhood of the confidence interval. However,
if we find a 95 % confidence interval {2;4,27 , 2;4,56 ) for the solar
eccentricity, our table could be based on either of the attested values
2:4,35,30 (corresponding to a maximum solar equation of 1°59') and
2;4,45 (corresponding to 1°59'10").

APPLICATION OF THE METHOD OF LEAST SQUARES TO AL-KHWARIZMI’S
TABLE.

We have already found that the conversion factor underlying al-
Khwarizmi’s table for the equation of time is 15°/ hour. Furthermore, we
expect that the argument of the table is the true solar longitude. Under
these assumptions the results of the application of the method of least
squares (as displayed by my program TA) are as follows:

EQUATION OF TIME, AL-KHWARIZMI (SUTER TABLES 67-68)
LEAST SQUARES ESTIMATION FROM THE VALUES FOR ARGUMENTS 1, 2, ..., 360.

FINAL RESULT (AFTER 3 ITERATIONS)
PARAMETER ESTIMATE 95 % CONFIDENCE INTERVAL

OBLIQUITY 2350, 6,30,45, 1 { 23;44,58, 0,34,57 , 23;55,13,58,27,47 )
ECCENTRICITY 2;29,50,28,18,53 { 2;28,39,20,50,30 , 2;31, 1,35,47,15)
APOGEE 84;40,33,21,39,30 { 84;13,20,52,13, 6, 8S; 7,45,51, 5,54)
EPOCH CONSTANT 4;30, 3,0, 0, 0 { 4;29,14,56,34, 9, 4;30,51, 3,25,51)

STANDARD DEVIATION OF THE DIFFERENCES: 0;0,31,0,51,32

application of the method of least squares, the estimates need not be equal to the
actual parameter values because of the internal rounding in our computer.
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Although we have found historically plausible values for the
obliquity of the ecliptic and the solar eccentricity (Ptolemy’s and
al-Khwarizmi’s value 23;51 for the obliquity and Ptolemy’s value 2;30 for
the eccentricity lie in the middle of the respective 95 % confidence
intervals), we cannot be satisfied with the result. We have seen that all
tabular values are multiples of four seconds. Therefore the standard
deviation of the differences between al-Khwarizmi’s table and a table
computed for the least squares estimates would approximately be 4 -
0;0,0,17 = 0;0,1,28 if we had used the correct function and method of
computation. The standard deviation found is more than 20 times as large.
Since furthermore the differences display a clear sine wave pattern with
an amplitude of approximately 45 seconds (Figure 6), we must conclude
that we have not used the correct underlying function, i.e. that
al-Khwarizmi’s table is not an ordinary table for the equation of time as
a function of the true solar longitude.

We will therefore perform the least squares estimation for other
possibilities of the underlying function. If we assume that the argument of
the table is the mean solar longitude, the results are as follows:

EQUATION OF TIME, AL-KHWARIZMI (SUTER TABLES 67-68)
LEAST SQUARES ESTIMATION FROM THE VALUES FOR ARGUMENTS 1, 2, ..., 360.

FINAL RESULT (AFTER 3 ITERATIONS)

PARAMETER ESTIMATE 95 % CONFIDENCE INTERVAL
OBLIQUITY 23;35,31,17,18,32 {23;29,12,34,43,30 , 23:41,48,24,45,48 )
BCCENTRICITY 2;36,11,51,25, © { 2;34,41,48,17,40 , 2;37,41,54,32,20 )
APOGEE 85;17,30,12,50,45 (84;47,11,46, 4, 3, 85;47,48,39,37,27 )
EPOCH CONSTANT 4;30, 3,0, 0,0 { 429, 4,42,13,34,  4:31, 1,17,46,26 )

STANDARD DEVIATION OF THE DIFFERENCES: 0:;0,37,37,19,59

We now find a completely different plausible value for the
obliquity of the ecliptic (the common Islamic value 23;35), but a
practically impossible value for the solar eccentricity. Furthermore, the
minimum possible standard deviation is again much larger than the value
0,0,1,28 which we expect for the correct underlying function, and the
differences between al-Khwarizmi’s table and a table computed on the
basis of the estimates again display an obvious pattern (this time more
complicated than an ordinary sine-wave; see Figure 7). We conclude that
the tabulated function is not the equation of time as a function of the mean
solar longitude either.
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Figure 6 Differences between al-Khwdrizm(’s equation of
time and the best possible recomputation under the assumption
that the argument is the true solar longitude.
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DISPLACED SOLAR EQUATION,

At this point we have to turn to historical sources in order to
investigate whether there are still other possible methods of computing
tables for the equation of time. In 1988 Kennedy analysed two Islamic
tables for the equation of time, namely those in the Jami° Zij of Kushyar
ibn Labban (c. 970) and in the Khaqanr Zij of al-Kashi (c. 1420).
Kennedy followed the rules presented in the two zfjes and found an
excellent agreement between al-Kashi’s table and his own recomputation.
However, in the case of Kushyar’s table there remained large systematic
differences between the tabular values and recomputed ones.

In my doctoral thesis (1993, pp. 134-141) I investigated Kuishyar’s
table for the equation of time anew. Like in the present case, an
application of the method of least squares did not at once lead to results.
Therefore I turned to the text of the Jami® Zij and found that Kishyar,
who tabulated the equation of time as a function of the mean solar
longitude, made use of a so-called displaced solar equation. As we have
seen in Section 5, the solar equation as determined by Ptolemy and most
Islamic astronomers is sometimes additive and sometimes subtractive. This
implies that the user of a solar equation table had to decide whether the
solar equation must be added to or subtracted from the solar longitude

depending on the value of the solar anomaly. Kishyar avoided this

difficulty and made his solar equation g.(a,) always additive by
subtracting it from 2° and thus obtaining a displaced equation g,.(a,)
defined by g,.4(a,) = 2 — g.(a,) (as before, a, denotes the mean solar
anomaly: @, = A, — A,). Kishyar’s approach was not new, since it had,
for instance, been used by Habash al-Hasib (c. 830) for his lunar equation
tables (Kennedy & Salam 1967, pp. 496-497).”

If Kashyar would add the displaced solar equation g, (A\,~A,) to
the mean solar longitude X, the result would be :

Aot Goa Aa=A) = A+ Q2 —Gu(a=N)) = A+2

PThe manuscript Istanbul Yeni Cami 784/2 of Habash’s zij also contains a table
for A\, + g,(ay), where ), is the longitude of the solar apogee and g,(a,) the solar
equation as a function of the mean solar anomaly {cf. Debarnot 1987, p. 58). From
this table the true solar position can be calculated by taking the tabular value for the
desired mean solar anomaly and adding it to that anomaly.
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"ordinary” solar displaced solar shifted displaced

An equation ) equation Noe solar equation
356 ~0; 8, 2 356 2; 8,2 356 2; 4,1
357 -0; 6, 1 357 2; 6, 1 357 2; 2,1
358 -0; 4, 1 358 2; 4,1 358 2,0, 0
359 -0; 2, 1 359 2; 2,1 359 ) 1;57,59

0 0; 0,0 0 2,0,0 0 1;55,59

1| 0; 2,1 1 1;57,59 1 1;53,59

2 0; 4, 1 2 1;55,59 2 1;51,58

3 0; 6, 1 3 1;53,59 3 1;49,58

4 0; 8 2 4 1;51,58 4 1;47,58
86 1;58,30 86 0; 1,30 86 0; 1,10
87 1;58,41 87 0; 1,19 87 0,1, 2
88 1;58,50 88 0; 1,10 88 0; 0,56
89 1;58,58 89 0 1,2 89 0; 0,52
90 1,59, 4 90 0; 0,56 90 0; 0,50
91 1;59, 8 91 0; 0,52 91 0; 0,52
92 1;59,10 92 0; 0,50 92 0; 0,57
93 1;59, 8 93 0; 0,52 ) 93 0; 1, 4
94 1;59, 3 94 0; 0,57 94 0; 1,12

Table 3 The displacement and the shift of Kiishyar’s solar equation
table

instead of the desired true solar longitude A itself (cf. Section 5). Kushyar
therefore replaced A, by a shifted mean solar longitude A_, defined by A,
= AN, — 2. The addition of the displaced solar equation to the
corresponding shifted mean solar longitude then yielded the true solar
longitude A. In order to tabulate the displaced solar equation as a function
of the shifted mean solar longitude Kiishyar had to shift all values two
degrees backwards, thus tabulating

Goa Pme = N) = 2= G N — M+ 2)

(cf. Table 3). In that way he could calculate the true solar position

*Thus the zeros g,(0°)=0;0,0 and ¢,(180°)=0;0,0 of Kiishyar’s original solar
equation lead to displaced solar equation values g, 4(—2°) = (¢54(358°)=) 2;0,0 and
4na(178°) = 2;0,0. The maximum value g,(92°) = 1;59,10 leads to a minimum
4xd(90°) = 0;0,50 and the minimum value ¢,,(268°) = —1;59,10 to a maximum
§04(266°) = 3;59,10 (in each case the argument of g, is the shifted mean solar
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corresponding to a given shifted mean solar longitude X\, by adding
Tnd Ams—A) 1O A,

Ao+ g Qe = A) = (M —2)+ (2 - 9o O +2 = N))
;m—qm(kn AN

It now seems natural that also the argument of Kuishyar’s table for
the equation of time was the shifted mean solar longitude A, instead of
the ordinary mean solar longitude \,. Thus we expect that the tabulated
function is:

Env) = Ep (A, +2)

15 - Ay + 2 —a Ay + 2 — g0 A t2) ) + 0

(cf. formula 5 and note that the shifted equation of time for argument A,

corresponds to the ordinary equation of time for argument \_, which is
equal to A, + 2°). We thus see that the equation of time as a function of
the shifted mean solar longitude can be obtained from the "ordinary"
equation of time by shifting all values two degrees backwards.

If we take into account that what Kiishyar calls the "mean solar
longitude" is in fact a shifted mean solar longitude, we find a good
agreement between his table for the equation of time and a recomputation
following the rules presented in his zij (van Dalen 1993, pp. 138-139).

THE SHIFT IN AL-KHWARIZMI'S TABLE FOR THE EQUATION OF TIME.

Different from Kushyar’s table for the equation of time, al-
Khwarizm1’s table is expected to have the true solar longitude as its
independent variable. Although al-Khwarizmi’s solar equation is not of the
displaced type described above, it could nevertheless be worth while to
investigate whether his equation of time values were shifted. For a given
shift A we define the shifted true solar longitude A, by A, = A — A. The
shifted equation of time E, as a function of A, is then given by:

E(N) = EN + 4)

longitude).
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=1UI5-0+A+qO\ +A4) —a\ + 4) + 0.

Again the resulting function is obtained from the "ordinary”
equation of time by shifting all tabular values A degrees backwards.
However, because of the shift some of the properties of the equation of
time as a function of the true solar longitude which we derived from the
symmetry relations satisfied by the right ascension and the solar equation
(formulas 7, 8 and 11 above) are no longer valid. Formula 11 now holds
only approximately, formula 8 yields a shifted solar equation q(A,+4) =
7% - (E,\,).— E,(180+)) ), and instead of formula 7 we obtain:

a(\+A) - \+4A) = c—-T%-(EMN) + E\ + 180°)) (12)

for every value of A,. Because \,+A equals A and a(A) — A = 0
whenever A\ is a multiple of 90°, we expect that the right hand side of
formula 12 equals O whenever A, equals a multiple of 90° minus A. Since
we usually do not have an exact value for ¢ and since the values of A, for
which the right hand side of formula 12 is precisely equal to zero need not
be among the arguments of our table, this property allows us only in
exceptional cases to determine the shift.

A more effective method for determining the shift is to regard it
as a fifth parameter of the equation of time and to approximate it together
with the other underlying parameters using the method of least squares.
If we assume that the independent variable of al-Majriti’s table is a shifted
true solar longitude, the results are as follows:

EQUATION OF TIME  AL-KHWARIZMI (SUTER TABLES 67-68)
LEAST SQUARES ESTIMATION FROM THE VALUES FOR ARGUMENTS 1, 2, ..., 360.

FINAL RESULT (AFTER 3 ITERATIONS)
PARAMETER ESTIMATE 95 % CONFIDENCE INTERVAL

OBLIQUITY 23:51,51, 2,41,32 {23;51.21, 8,10,36 , 23;52,20,56,37,11 )
ECCENTRICITY 2;29,50,28,18,53 { 2;29,43,33,23,37, 2;29,57,23,14, 8 )
APOGEE 82;39, 3,53,30,19 (82,36, 8,48, 1, 3, 82:41,58,58,59.35)
EPOCH CONSTANT 4:30, 3, 0,0, 0 { 4;29,58,19,38,52,  4;30, 7,40,21, 8)
SHIFT ~2; 1,29,28, 9,11 {-2; 2,43,23, 2,39, —2; 0,15,33,15,43)

STANDARD DEVIATION OF THE DIFFERENCES: 0;0,3,0,55,44

We first note that the minimum possible standard deviation of the
differences between al-Khwarizmi’s table and computed values based on
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the assumption of a shift is much smaller than the standard deviations we
obtained before. In fact, the standard deviation found is only twice as
large as the value 0;0,1,28 which we expect if we have chosen the correct
underlying function for a table of which all values are muitiples of four
seconds.

Secondly we note that the least squares estimates for the shifted
equation of time are close to historically plausible values for all
underlying parameters: Ptolemy’s and al-Khwarizmi’s value 23°51' for
the obliquity of the ecliptic, Ptolemy’s value 2;30 for the solar
eccentricity, and the value 82°39’ (or possibly 82°40’) for the longitude
of the solar apogee. This value was determined from observations made
by order of the caliph al-Ma’miin (c. 830) and was used in the zijes of al-
Khwarizm1’s contemporaries Yahya ibn Abi Mansiir and Habash al-Hasib.
The value 4;30 for the epoch constant is in agreement with what we have
found before using formula 11, and the estimated shift is close to —2°
(i.e. 2 degrees forwards). The fact that some of the plausible parameter
values lie just outside of their 95 % confidence intervals, could point to
small systematic errors in the computation of the table, As was mentioned
before, possible causes of such errors are linear interpolation in the
equation of time itself or in the underlying tables, systematic truncation
of intermediate results, etc.

If we recompute al-Khwarizmi’s table for the equation of time for
the historically plausible parameter values mentioned above, we find that
the differences between table and recomputation are generally smaller than
7 seconds and display no obvious global pattern (see Tables 4a to 4c and
Figure 8). There are some local patterns in the differences (for example,
the small mountains around arguments 6, 65 and 216, and the somewhat
larger one around 266°). These could be indications of the small
systematic errors indicated above. However, the general pattern of the
differences is random enough to conclude that the historically plausible
parameter values found above were in fact used for-the computation of al-
Khwarizmi’s table for the equation of time.

The use of the method of least squares has (indirectly) confirmed
that al-Khwarizmi’s table displays the equation of time as a function of the
true solar longitude and that the conversion factor used is 15°/ hour. If we
apply the method of least squares for the equation of time as a function of
a shifted mean solar longitude, we find a minimum possible standard
deviation of 19 seconds and differences between table and recomputation

. . ..
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Figure 8  Differences between al-Khwarizmi’s values for the
equation of time and our final recomputation under the
assumption that the tabular values were shifted.

showing obvious sine-wave patterns. If we assume that the conversion
factor is 15;2,28 instead of 15, the minimum possible standard deviation
of the differences is again 3 seconds and the differences are just as
random as in the case of conversion factor 15, but the least squares
estimates are further away from historically plausible values.

Assuming that the shift of al-Khwarizmi’s table for the equation of
time is —2° precisely, we can easily reconstruct the underlying "ordinary”
table for the equation of time. From this table we can reconstruct the right
ascension and the solar equation according to formulas 7 and 8. It turns
out that both underlying tables contain large groups of smail errors of the
same sign pointing to the presence of some source of small systematic
error. I have not been able to determine this source, but it is probably the
same one that also caused the above-mentioned local patterns in the
differences in Tables 4a to 4c and Figure 8.
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N TO) diff N OTOY  diff AT &ff X OTOY  diff AT diff AT dife AT diff A TO)  diff
1 88 -2 31 18,48 +2 61 23,28 +5 o1 19,28 +2 121 14,40 -7 | 151 17,48 -7 | 181 27,8 -1 | 211 34,8 -1
§ g’ig :; gg }2’23 » g§ gig :: g§ :g’lg :: 122 14,40 -5 | 152 18,4 -6 | 182 27,28 212 34,12 -3
, , , , 123 14,40 -3 153 18,20 -5 183 27,44 —4 | 213 34,16 -4
4 9,12 -3 34 19,40 +3 64 23,26 +7 94 18,48 ‘ 124 14,40 -1 154 18,40 184 28,4 —2 | 214 3420 -4
2 §’§§ :g gg })g’fg :g 22 ;13’;8 :; gg :g;g :; 125 14,40 -1 155 19,0 +4 | 185 2824 —1 | 215 3422 -5
: 20, , , ) 126 14,40 -1 156 19,16 +3 186 28,40 —4 | 216 34,24 -5
7 10,16 -6 37 20,28 +4 67 23,16 +6 97 18,8 -3 127 14,0 -1 157 1932 +2 | 187 29,0 -2 | 217 3426 -5
8 10,40 -5 38 20,40 +2 68 23,12 +7 98 17,56 -3 128 14,41 -1 158 19,48 +1 188 29,20 218 3427 -5
9 11,4 -3 39 20,52 69 23,6 +5 99 17,44 -3 129 1442 -2 | 159 20, 4 189 2936 —1 | 219 3428 -4
10 11,28 —1 .40 21,4 -2 70 23,0 +5 100 17,32 -3 130 1444 -2 160 20,24 +2 190 29,52 -3 | 220 3428 -3
11 11,48 -4 41 21,20 +2 71 22,54 +5 101 17,20 -3 131 14,48 -2 | 161 20,44 +4 | 191 30,8 ~4 | 221 3427 -3
12 12,12 -2 42 21,32 +! 72 22,44 +] 102 17,8 -4 132 14,52 —1 162 21,0 +2 192 30,28 222 3426 —1
13 12,40 +3 43 21,44 +2 73 22,36 103 17,0 -1 133 14,56 -1 163 21,20 +3 193 30,44 —1 | 223 34,24
14 13,4 +5 44 21,52 -1 74 22,28 104 16,48 -2 134 15,0 -2 164 21,40 +5 194 31, 4 +4 | 224 34,20
15 13,24 +3 45 22, 4 75 22,20 105 16,36 -3 135 15, 4 —4 165 21,56 +2 195 31,20 +4 | 225 34,16 +1
16 13,48 +5 46 22,16 +2 76 22,12 106 16,28 ~1 136 15,10 —4 166 22,16 +3 196 31,32 +1 | 226 34,12 +3
17 14,8 +3 47 22,24 +1 77 22,4 +1 107 16,16 -3 137 15,20 -1 167 22,36 +3 197 31,44 —1 | 227 34,4 +1
18 14,28 +1 48 22,32 +1 78 21,56 +3 108 16, 8 ~—1 138 15,28 168 22,52 198 32, 0 +1 228 33,56
19 14,48 -1 49 22,40 +1 79 21,44 109 16, 0 139 15,36 169 23,12 199 32,12 —1 | 229 33,48 +1
20 15,8 -2 50 22,48 +1 80 21,32 -2 110 15,52 +1 140 15,44 —1 170 23,32 200 32,24 -2 230 33,36 -2
21 15,28 -3 51 22,56 +3 81 21,24 +1 111 15,44 +1 141 15,52 -2 171 23,52 +1 201 32,40 +2 | 231 33,28
22 15,52 52 23,0 +1I 82 21,12 112 1536 +1 142 16,0 —4 172 24,16 +5 | 202 32,52 +2 | 232 33,16 -1
316,12 ~1 53 23,8 +4 83 21,0 -1 113 1532 +4 143 16,8 —6 | 173 2436 +5 | 203 33,4 +3 | 233 33,4 -2
24 16,32 ~1 54 23,12 +3 84 2048 -2 114 15,24 +3 144 16,20 -5 174 24,52 +1 204 33,16 +4 | 234 32,52 -1
25 16,52 -1 55 23,16 +3 85 20,36 -3 115 15,16 +2 145 16,32 -4 | 175 25,12 +1 | 205 33,24 +2 | 235 32,40
26 17,8 -5 56 23,20 +4 8 20,24 -3 116 15, 8 -1 146 16,48 176 25,32 +1 | 206 133,32 236 32,28 +2
27 17,28 -4 57 23,24 +5§ 87 20,14 -1 117 15,0 -3 147 17,0 177 25,52 +1 207 33,40 —1 237 32,12 +1
28 17,48 -3 58 23,26 +5 88 20,4 +1 118 14,56 -2 148 17,12 —1 178 26,12 +2 | 208 33,48 —1 | 238 31,56 +1
29 18,8 -2 59 23,27 +5 89 19,54 +3 119 - 14,52 -2 149 17,24 -3 179 26,32 +2 209 33,54 -2 | 239 31,40 +2
30 18,28 60 23,28 +5 90 19,40 +2 120 14,44 —6 150 17,36 —4 | 180 26,52 +2 | 210 34,0 -3 | 240 31,24 +3
Table 4a ~ al-Khwdrizmi’s values for the equation of time ( T(\) ) and Table 4b  al-Khwarizm{’s values for the equation of time ( T(\) ) and the
the differences between al-Khwarizmi's values and our final recomputation differences between al-Khwarizmi'’s values and our final recomputation
(1st part) (2nd part)
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. 7. Conclusi
A T diff A TN diff A TN diff ATV diff sions
241 31,8 +5 | 271 17,16 -3 | 301 3,28 331 0,24 -1 ~ The mathematical analysis of the table for the equation of time in
242 3048 +4 | 272 1644 -3 | 302 3,8 -1 | 332 032 the Lati lation of A . L e g
243 3028 +4 | 273 1612 —2 | 303 248 —4 | 333 040 +1 e Latin translation o a}—Majrxgl s recension of al-Khwarizm1’s Sindhind
244 30,4 +1 | 274 1540 -2 | 304 232 -3 | 334 0,48 Zjj has led to the following results: _
;:2 gg»;g ~2 ;;2 :3,32 —; :gf; i,lg -3 | 335 05 -1 A. The independent variable of the table is the true solar longitude, in
, 36— ,0 -3 | 336 1,4 -3 : . . : : i}
247 2856 -1 | 277 144 -2 | 307 148 —1 | 337 116 -1 agrge_n_l,ent w1th.the explanatory text in the Latin translation of al
248 28,36 +2 | 278 13,32 -2 308 1,36 338 1,28 -1 Majritl’s recension.
249 28,12 +2 | 279 13,4 +1 | 309 124 +1 | 339 1,40 B. The factor used for the conversion from equatorial degrees to hours
2o oL | Bo SO is 15°/ hour. This can be concluded from the fact that practically all
252 2652 -2 | 282 1136 +6 | 312 052 +2 | 342 220 tabular values are multiples of 4” and is confirmed by an application
253 2628 +1 | 283 11,4 +4 | 313 040 -1 | 343 236 +2 of the method of least squares. \
254 26, 0 284 10,36 +6 | 314 032 ~1 [ 344 2,52 +3 C. The underlying value of the obliquity of the ecliptic is 23°51’. This
255 25,32 285 10,8 +7 | 315 024 -1 | 345 3,4 alue al derlies the tables for the solar declinati d the righ
256 25 4 286 936 +4 | 316 016 -3 | 346 3.0 value also underlies the tables for the solar declination and the right
257 24,36 +1 287 9,8 +5 317 0,10 -3 347 336 -1 ‘ ascension in al-Majriti’s recension. It is a rounded version of the
258 24,8 +2 | 288 8,40 +5 } 318 0,6 -3 | 348 352 -2 value 23°51'20"” used by Ptolemy in the Almagest and the Handy
259 23,36 289 8,12 +4 | 319 0,4 -1 | 349 4,12 +t Tables
260 23,4 -2 | 290 7,44 +3 | 320 0,2 350 4,28 -1 ‘ . ) i
261 22,36 291 7,16 +2 | 321 0,1 +1 | 351 448 +1 D. The underlying solar equation was computed on the basis of the
262 22,8 +3 | 292 652 +3 | 322 0,0 +1 | 352 5,12 +6 Ptolemaic solar theory. The value of the eccentricity is Ptolemy’s
ISVRE DA BB I e B ggz gig i 2:30, which corresponds to a maximum equation of 2°23’. The solar
265 2040 +8 | 295 532 —3 | 325 0.4 +4 | 355 6.8 +3 equation table in al-Majrti’s recension is of Indian / Persian origin
266 20,16 +16 | 296 5,8 —4 326 0,6 +4 356 6,28 +3 and is based on a maximum equation of 2°14'.
267 19,40 +12 | 297 448 -2 | 327 0,8 +3 | 357 6,48 43 E. The underlying longitude of the solar apogee is 82°39’, the value
268 19,0 +4 | 298 4,28 328 0,00 +1 | 358 7,8 +2 : determined by th £ ast King for the caliph al-
269 18,24 299 4,8 +1 | 329 014 +1 | 359 728 +1 etermined by the group Ot astronomers working lor the cauphi a
270 17,52 +1 | 300 3,48 +1 330 0,20 +1 | 360 7,48 Ma’miln (c. 830).% Note that neither the Indian value 77°55" given
in al-MajritT’s instructions for calculating the true solar longitude,
Table 4¢ al-Khwarizm{'’s values for the equation of time ( T(\) ) and nor the Ptolemaic value 65°30' were used. It seems natural that
the differences between al-Khwdrizmi’s values and our final recomputation Ptolemy’s outdated longitude of the solar apogee was replaced with
(3rd part) the result of recent observations, but then the same should have been

done with the solar eccentricity (the maximum solar equation
determined by al-Ma’miin’s astronomers was 1°59').

F. The underlying value of the epoch constant is 4°30’. As we have
seen, the epoch constant was determined in such a way that the

20n the basis of the 95 % confidence intervals given above we cannot choose
between the value 82°39’, which was used in the zijes of Yahya ibn Abi Mansiir and
Habash al-Hasib, and the rounded value 82°40’, which occurs in a table in Habash's -
zij (see Debarnot 1987, p. 58).
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minimum equation of time became zero. Since the minimum occurs
for argument 322° (22° Aquarius), corresponding to argument 320°
for the unshifted table, we expect ¢ = «(320) — 320 + q(320—-A,)
(cf. formula 4). For the parameter values found above this yields ¢
= 4;30,22, which is rounded to 4;30.

G. The values for the equation of time in al-MaijritI’s recension were
shifted forwards 2 degrees, i.e. the actual equation of time value for
0° occurs for argument 2°, the one for 1° for argument 3°, etc. 1
have not been able to find a satisfactory explanation for this shift.
Neugebauer explains how a small shift in the solar longitude is
required to make the minimum equation of time equal to 0 (1962,
pp- 64-65); however, this shift is smaller than 1’. Furthermore, there
is no reason to believe that al-Khwarizmi’s table for the equation of
time belonged to a set of solar tables based on a displaced equation,
such as Kushyar’s. In fact, al-Khwirizmi should have chosen his
displacement larger than 2°, since his maximum solar equation is
2°23'.

From the above we can conclude that the table for the equation of
time in the Latin translation of al-MajritT’s recension of al-Khwarizm’s
Sindhind Zij fits into the group of Ptolemaic tables in that work which
probably stem from al-Khwarizmi (group I-C in Section 4): it is based on
the Ptolemaic values for the obliquity and the solar eccentricity and has
a minimum value equal to zero following the table for the equation of
time in the Handy Tables. The longitude of the solar apogee stems from
the astronomers employed by the caliph al-Ma’miin and was used in the
earliest Islamic astronomical handbooks which were mainly based on the
Ptolemaic planetary models. Nevertheless, we cannot be certain that the
table was computed by al-Khwarizmi, since none of the sources listed in
Section 3 mentions a table for the equation of time in al-Khwarizmi’s
original zfj. In any case we can conclude that either the whole table or the
underlying parameter values were transmitted from Eastern to Western
Islam.
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