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1. Introduction

Iskandar Sultan (1384–1415) was the son of ↪Umar Shaykh, the eldest
of the four sons of Tamerlane, and the Mongol princess Malikat Agha.
Iskandar ruled over several parts of Iran after the early death of his
father, was involved in the struggle for power over various parts of the
Timurid empire after Tamerlane’s death, and was finally executed on the
order of his half-brother Rustam. Iskandar remains most well-known
for his patronage of the arts and sciences and is associated with several
beautifully illustrated manuscripts that survive from his time.

One of these manuscripts is his own deluxe Horoscope (i.e., nativ-
ity book), compiled in 1411 CE, which is extant as London, Wellcome
Library, Persian 474.1 Besides the famous, magnificent colour depic-
tion of the horoscope for the moment of Iskandar’s birth and predictions
based on the astrological houses at the time of his birth and for the next
twelve solar years of his life, this nativity book includes full details of
all calculations needed to establish the horoscope as well as a large set of
tables. In particular, the 86 folios that make up the manuscript contain
the following:2

* Ptolemaeus Arabus et Latinus, Bayerische Akademie der Wissenschaften, Alfons-
Goppel-Str. 11, 80539 München, Germany. Email: bvdalen@ptolemaeus.badw.de.

1 See https://wellcomecollection.org/works/ua87equq for a brief description of the
manuscript and access to public-domain scans of the entire work. The manuscript was
first introduced in Keshavarz, ‘The Horoscope’, and Elwell-Sutton, ‘A Royal Tīmū-
rid Nativity Book’, and was catalogued in Keshavarz, A Descriptive and Analytical
Catalogue, pp. 396–401 (no. 224, with three colour plates). Further publications on
the manuscript and its contents include Tourkin, ‘Iskandar-sultan’; Tourkin, ‘Medical
Astrology’, and Caiozzo, ‘TheHoroscope’. For a full analysis of amuch later but similar
nativity book, see Elwell-Sutton, The Horoscope.

2 The manuscript was originally foliated in reverse order from 1 to 87 at the right
top of right-side pages (with the beginning of the text of the Horoscope on fol. 87r, the
illuminated horoscope diagram between fols 70 and 71, and the colophon on fol. 21r).
Later on, the manuscript was re-foliated in the correct order at the top left of recto pages,
but only on every tenth folio and some significant other pages; with this numbering, the
text starts on fol. 1v, the horoscope diagram is on fols 18v–19r, and the colophon on

mailto:bvdalen@ptolemaeus.badw.de
https://wellcomecollection.org/works/ua87equq
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● Introduction (fols 1v–2r).
● Calculations of all quantities needed for establishing the horoscope
(fols 2r–16r). These quantities include: true planetary positions for
the times of conception and birth, astrologically relevant arcs on the
celestial sphere for the planets and a set of fixed stars, the correction
of the ascendant by three canonical methods, etc. Only in one case is
a geometrical proof given, namely for the determination of the inci-
dental horizon (see Section 19), but for most of the other calculations
step-by-step results are provided. The text includes a defective dia-
gram for the calculation of the astrological houses (fol. 4v, see p. 55
in Section 15), a problematic diagram of the orbs of Mercury filled
in gold (fol. 5v, see p. 36 in Section 12), and an unclear diagram for
the incidental horizon (fol. 6v, see p. 68). At the end of this chapter,
Iskandar’s life expectancy is estimated as 30 years, 10 months and
6 days (around four months shorter than his actual life-span).

● Tabular representation of the numerical results of the first section
(fols 16v–20r, interrupted by the illustration of the birth horoscope).
These include: a table of the ecliptic longitudes of the houses, plan-
ets, and around fifty astrological lots at the time of birth, with some
astrological information; and a table with longitudes, latitudes, mag-
nitudes, ascensions of transit, ascensions of rising, and temperaments
at the time of birth for 63 fixed stars (fols 18r, 19v–20r).

● Double-page illustration of the birth horoscope of Iskandar Sultan
(fols 18v–19r, with two pages of the star table on its obverse).

● General predictions for Iskandar based on the twelve astrological
houses at the time of his birth, and a discussion of specific predictions
based on prorogations (tasyīrs), termini (intihā↩s), periods (fardārs)
and ascendants of transfers (ṭawāliʿ-i taḥwīlāt) (fols 20v–23r).

● Tables of prorogations and termini for the twelve houses, the seven
planets, and the lot of fortune for a period of 88 years starting with
the year of Iskandar’s birth (fols 23v–62v). This is supplemented
by tables of termini of the ascendant for each month of the years in
a twelve-year cycle (fols 63r–65r). Brief comments on both sets of
tables can be found in Appendix E.

fol. 68v. All my references (given both in the main text and in the margins) are to the
later foliation in the correct order of the manuscript. Note that fol. 3 was incorrectly
bound and in fact belongs after fol. 5; as a result, the topics in this commentary are
discussed in the order fols 4, 5, 3. The scans of the manuscript on the website of the
Wellcome Library were initially provided in disorder; the correct order was restored in
late June 2022.
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● Specific predictions for the twelve solar years of Iskandar’s life fol-
lowing the compilation of the horoscope in 1411 CE (fols 65v–68v).
This section ends with a colophon that gives the name of the author as
Maḥmūd b. Yaḥyā b. Ḥasan b. Muḥammad al-Kāshī, known as ↪Imād
al-munajjim, and the date of completion of thework as 22Dhū l-qa↪da
813 (18 March 1411), four years before Iskandar’s death.

● Ephemeris for true solar (i.e., Jalālī) years corresponding to the Yaz-
digird years 781–791 (1412–1422) (fols 69r–84v). The table displays
four months of the Persian calendar on every page (with five or six
additional lines for the epagomenae in the second column of the third
page for some, but not all of the years) and starts with the monthMur-
dādhmāh of the true solar year starting in 781Yazdigird. The headers
of the table indicate the Yazdigird equivalents of the Jalālī year be-
ginnings (i.e., the vernal equinoxes) in the form ‘Ephemeris (taqwīm)
of the tenth year of the tenth [Saturn–Jupiter] conjunction in the airy
triplicity, the night of Sunday, 10 Tīr māh [in the] old [calendar] of
the year 782 [Yazdigird]’. The actual first page of the ephemeris,
displaying the months Farwardīn to Tīr of the true solar year starting
in 781 Yazdigird, may have been omitted; the heading of the current
first page states ‘corresponding to the night of 28 Dhū l-qaʿda of the
year 784 [Hijra], hours elapsed since (gudhashta az) noon’, suggest-
ing that a first part similar to the headers for the following years is
missing. For every month the following quantities are provided: the
weekdays, ‘Jalālī’ (i.e., the day of the Persian month), and the true
positions of the Sun, the Moon, the five planets and the ascending
node of the Moon.

● Horoscope diagrams with brief predictions for the Yazdigird years
781–792 (1411–1422) (fols 85r–86r). The diagrams have headings
similar to those for the years of the preceding ephemeris, e.g., ‘Horo-
scope diagram (zāʾirja) of the ascendant of the ninth year of the
tenth [Saturn–Jupiter] conjunction of the airy triplicity, correspond-
ing to 781 Yazdigird’ (this last part is omitted from the first diagram).
That the diagrams are intended for the year transfers (i.e., the ver-
nal equinoxes) of the respective years is confirmed by the fact that
the position of the Sun is always indicated as 0;0◦ in the section for
Aries. The central panel gives the termini (intihāʾ) of the conjunc-
tion, which increase by exactly one zodiacal sign per year, and the
lords of the year (sālkhudā), mostly indicated by the last letter of the
planets concerned. The sections for the twelve houses present the
positions of important fixed stars besides those of the Sun, the Moon
and the planets.
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The first section of the Horoscope contains a large amount of math-
ematically computed astronomical and astrological data. The purpose
of this commentary is to provide definitions for the astronomical and
mathematical-astrological concepts that are used in this part of the Horo-
scope, and to outline the methods by which the data in the Horoscope
were calculated. The commentary explains all computations in detail
and verifies the correctness of the numbers given by the author. Fur-
thermore, the accuracy of the calculations and, in some cases, the source
of the errors in the data in the Horoscope are discussed. Since also basic
concepts are explained, and most relevant aspects for the computation
of horoscopes are treated, this commentary can also be read as an intro-
duction to the mathematics of Islamic astrology.

A full English translation of the text of the nativity book of Iskandar
Sultan was prepared by Sergei Tourkin in the early 2000s, but unfortu-
nately remains unpublished. The present mathematical commentary on
the Horoscope was originally written in 2003 and 2004 in close collab-
oration with Tourkin and has now been expanded with additional expla-
nations and relevant recent literature. Since it is not possible to refer to
the translation, references to folio and line numbers in the manuscript
are provided in marginal notes (and occasionally in the main text) for all
discussions of topics and results of calculations that are provided in the
Horoscope.

2. Sexagesimal numbers

Nearly all numbers in the Horoscope, and in Islamic astronomical and
astrological sources in general, are written in the sexagesimal number
system that had been common in astronomical practice from ancient
Babylonian times onwards. In Arabic and Persian, the abjad system, an
adaptation of the Greek notation for sexagesimal numbers, was adopted.
In this system, single letters of the Arabic alphabet represent the numbers
from 1 to 9, the multiples of 10 up to 90, and the multiples of 100 up to
1000: alif = 1, bā↩ = 2, jīm = 3, ..., ṭā↩ = 9, yā↩ = 10, kāf = 20, lām = 30,
..., sīn = 60, qāf = 100, rā↩ = 200, ..., ghayn = 1000. These letters
were combined to denote numbers such as 25 = kāf-hā↩ ,كه 47 =mīm-zā↩
,مز 358 = shīn-nūn-ḥā↩ ,شنح 1962 = ghayn-ẓā↩-sīn-bā↩غظسب, etc. The
following table shows the letters of the Arabic alphabet with their values
as abjad numbers, as well as the special symbol for zero, which derives
from the Greek form , an omicron with a macron.3

3 A slightly different system became common in the western Islamic world; it uses,
for example, ṣād instead of sīn for 60. For the origin of this system, see Thomann,
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0 
1 ا 10  100 ق
2 ٮ 20 ڪ 200 ر
3 ح 30 ل 300 ش
4 د 40 م 400 ت
5 ه 50 ن 500 ث
6 و 60 س 600 خ
7 ز 70 ع 700 ذ
8 ح 80 ف 800 ض
9 ط 90 ص 900 ظ

1000 غ
In publications on Islamic astronomy, sexagesimal numbers are usu-

ally transcribed according to the following convention, introduced by
Otto Neugebauer: sexagesimal digits are separated by commas, and the
sexagesimal point is represented by a semicolon. Thus 3,12;38,45 de-
notes 3 · 60+ 12+ 38

60 +
45
602 . Following the Greek usage, in Arabic and

Persian the integer part of a sexagesimal number larger than 60 is mostly
expressed decimally, so that the above number may be more frequently
encountered as 192;38,45.4 In general, only planetary longitudes, cen-
trums and anomalies are expressed in zodiacal signs plus degrees. Only
in the case of ecliptic longitudes do these signs correspond to the ac-
tual signs of the zodiac, in all other cases they are simply a measure
of thirty degrees. In transliterations of sexagesimal numbers, zodiacal
signs are denoted by a superscript ‘s’. Here 0s stands for the first sign,
Aries, i.e., ecliptic degrees between 0 and 30; 1s stands for Taurus, 2s
for Gemini, etc. Consequently, the longitude of the ascendant at the
time of birth of Iskandar is written as 9s0;17,35◦, equivalent to 0;17,35◦
Capricorn (cf. Section 14). In general, arcs and angles are followed by a
degree sign, while plain numbers are not. Since the Persian text does not
explicitly indicate zodiacal signs or the place of the sexagesimal point,

‘Scientific and Archaic Arabic Numerals’. For the forms of abjad numerals as they are
found in the manuscripts, see Irani, ‘Arabic Numeral Forms’.

4 If, however, in such cases the integer part is larger than 360 (i.e., the number of
degrees in a circle), it is often written with the so-called Hindu numerals, the precursors
of the Arabic and western digits from 0 to 9. For these see, for example, the article ‘↪Ilm
al-ḥisāb’ by Abdelhamid I. Sabra in The Encyclopaedia of Islam. New edition, vol. III
(1971), pp. 1138–1141; Lemay, ‘The Hispanic Origin’; Kunitzsch, ‘The Transmission’;
and Burnett, ‘Indian Numerals’. For the forms of Hindu numerals as they are found in
medieval Arabic and Persian manuscripts, see Irani, ‘Arabic Numeral Forms’.
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the number that is intended must often be determined from the context.
For example, 2 21 18 43 could not only stand for 2s21;18,43◦, but also
for 2,21;18,43◦, 2;21,18,43◦, 0;2,21,18,43, etc. The similarity of cer-
tain Arabic and Persian letters leads to another difficulty in the inter-
pretation of the numbers in the text, namely the possibility of scribal
mistakes. Pairs of letters such as ح and ح (3 and 8), د and ز (4 and 7),
و and ز (6 and 7), ط andڪ (9 and 20), and and ن (10 and 50, in com-
pounds such as ٮا 11 and نا 51) can be easily confused, especially because
the dots were often omitted.5

Sexagesimal calculations may be carried out by means of my com-
puter program SCTR, a sexagesimal calculator originally written for
DOS, but now also available in a 32bit version for Microsoft Windows 7
and later (download from my website http://www.bennovandalen.de/).
For carrying out the calculations in this article, I also made use of my
program Historical Horoscopes for determining planetary mean posi-
tions and equations and calculating an horoscope for a given moment
in time on the basis of a set of parameters from a historical source. Fur-
thermore, I made use of ad hoc programs for calculating quantities such
as the distance from the equator, ascension of transit, rising and setting,
latitude of the incidental horizon, and projection of the rays.

An important objective for writing this commentary was to account
for the interpretation of the sexagesimal numbers in the text of Iskan-
dar’s Horoscope, to correct the scribal mistakes in the manuscript, and
to explain certain errors in the calculations. In order to achieve this,
I checked nearly every single computation in the text.6 Thus I came to
the conclusion that the calculations were generally carried out systemat-
ically and accurately. Of the existing errors, most were found to be due
to reading mistakes or computational errors by the author of the Horo-
scope himself, since these errors propagate through the following steps
of the calculations, leading to an erroneous final result. This seems to
indicate that the results of the calculations were generally entered into
the Horoscope directly without checking and correcting. Only relatively
few errors can be identified as plain scribal ones.

5 For a more extensive discussion of possible scribal errors in abjad numbers, see
van Dalen, ‘The Geographical Table’, pp. 532–534, and van Dalen, Ptolemaic Tradition,
p. 75, note 1 and the further references given there.

6 For all recomputations I have assumed the use of the standard type of rounding
(i.e., digits 30 and higher are rounded upwards, digits 29 and lower downwards) that
was mostly used by Ptolemy and Islamic astronomers, rather than truncation. Errors in
the values in the Horoscope of 10 seconds or less are not always separately mentioned
in the ‘notes on the calculations’.

http://www.bennovandalen.de/
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3. Chronology

A variety of essentially different calendars were described and used
in Islamic astronomical sources. This concerned, on the one hand, the
calendars in use by the various people that had become part of the Islamic
realm, and on the other hand historical calendars in which the dates were
expressed of observations that were used to improve the accuracy of
astronomical parameters, especially of planetary mean motions. The
calendars referred to included:

● Solar calendars with a constant year length of exactly 365 days,
namely the ancient Egyptian calendar and the most common form
of the Persian calendar named after the last king of the Sassanid dy-
nasty, Yazdigird III (r. 632–651).

● Solar calendars with an ordinary year length of 365 days and a leap
year of 366 days every fourth year, namely ‘Roman’ and ‘Syrian’
versions of the Julian calendar (with the Seleucid era in 311 BCE as
the most common epoch) as well as the Coptic calendar with its year
beginning on 30 August and twelve months of 30 days plus 5 or 6 so-
called epagomenal days (usually reckoned from the era of Augustus
in 30 BCE or the era of Diocletian in 284 CE).

● True solar calendars in which the first day of the year is determined
from the exact time of the vernal equinox, in particular the Malikī or
Jalālī calendar introduced by the Seljuk sultan Jalāl al-Dawla Malik-
shāh I (r. 1072–1092) with epoch 1079. This calendar used the month
names of the traditional Persian calendar (distinguished by an indi-
cation ‘Jalālī’ as opposed to qadīm ‘old’) and made the epogomenae
either five or six days.

● The purely lunar Arabic calendar used by Muslims for both religious
and civil purposes. The epoch of this calendar is the hijra (the flight
of the prophet Muḥammad from Mecca to Medina in 622 CE) and its
years are approximately eleven days shorter than a solar year.

● Occasionally also descriptions of lunisolar calendars (with each year
consisting of either twelve or thirteen lunar months in such a way
that the average year length becomes equal to that of the true solar
year) may be found in Islamic sources. This includes, in particular,
the Jewish calendar and the Chinese calendar that was introduced to
Persia by the Mongol conquerors in the 13th century.

Of these calendars, the three most important ones were the Arabic, Per-
sian and Julian calendars. The characteristics of these calendars and
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rules for converting dates between them were described in most Islamic
astronomical handbooks.7

The birth of Iskandar Sultan is said in the Horoscope to have taken2r: 21–2v: 3

place in the night to Monday, 3 Rabī↪ al-awwal 786 Hijra (25 April
1384). This date is in full agreement with the Maliki, Yazdigird and
Seleucid dates given in the following lines of the text, namely 15 Ur-
dibihisht 306Malikshāh, 17Murdādh 753 Yazdigird, and 25 Nīsān 1695
Alexander. A few sections later the time of the nativity is said to have2v: 9–16

been observed as 4;0 equal hours after sunset. The time of sunset on the
day in question can be determined from data that are given in the fol-
lowing lines (lines 12–14; these calculations will be explained in more
detail in Sections 7, 16 and 18): the true solar longitude is found as
1s12;38,45◦, and the solar declination as 15;40,18◦ north. Using the lati-
tude for Uzgand, given as 44;0◦ on fol. 2v:7, we find the equation of day-
light as 15;43,10◦, corresponding to approximately one hour and three
minutes. Thus, on the day of the nativity, the sun set at 7:03 pm mean
local time. It follows that Iskandar was born just after 11 pm, which is
in reasonably good agreement with the time expressed in terms of the
Chinese-Uighur calendar (cf. below). Since for Muslims the day starts
at sunset, for them the nativity took place on Monday, but expressed in
the Julian calendar it was on Sunday, 24 April 1384, one hour before
midnight. The formulation of the section on the ‘Time of the Blessed
Nativity’ (fol. 2v:9–10) suggests that 11 pm was the true local time of
the nativity, i.e., the time determined directly from solar observations.
This will be confirmed in Section 7.2 and Appendix C, where I explain
that this true time is (implicitly) converted to mean time (on which the
planetary tables in astronomical handbooks are based) in order to calcu-
late the other planetary positions. I will show that the determined mean
time of the nativity must have been close to 10;40,13 hours after noon
(see p. 25).

The data in the Horoscope concerning the Chinese-Uighur calendar2r: 25–2v: 3

have already been examined in detail by Elwell-Sutton.8 In Appendix A,
7 For an overview of the calendars and the methods for converting dates, see Ginzel,

Handbuch; Taqizadeh, ‘Various Eras and Calendars’ (2 parts), and the article ‘Ta↩rīkh’
by F. C. de Blois and Benno van Dalen in The Encyclopaedia of Islam. New edition,
vol. X (2000), pp. 258–271, which was partially reprinted in a new format in van Dalen,
‘Dates and Eras’. Checks of the equivalence of dates in calendars used in the Islamic
world are traditionally carried out by means of Spuler &Mayr,Wüstenfeld-Mahler’sche
Vergleichungs-Tabellen. More convenient and comprehensive checks can be performed
by means of my own DOS-like program CALH, the Windows program Kairos by Ray-
mond Mercier, and other tools available on the internet.

8 See Elwell-Sutton, ‘A Royal Tīmūrid Nativity Book’, pp. 121–123.
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I supplement his conclusions with somemore information on the basis of
a later study of the technical foundations of the calendar as they were ex-
pounded in the Īlkhānī Zīj by Naṣīr al-Dīn al-Ṭūsī.9 Both the day and the
time indicated for the Chinese-Uighur calendar turn out to be in perfect
agreement with the other chronological data found in the Horoscope.

4. Geography

Many calculations in spherical astronomy depend on a value for the
geographical latitude of the locality for which they are performed. Cal-
culations of solar, lunar and planetary positions depend on local time and
therewith on the geographical longitude of the locality. The direction of
prayer in Islam, the qibla, depends on the geographical coordinates of
Mecca and on those of the locality at which the prayer is performed.
For these reasons, tables with geographical coordinates were essential
aids for many types of astronomical and astrological calculations. Such
tables were found in numerous Islamic astronomical handbooks10 and in
various other types of works, as well as on certain astrolabes.11

Longitudes in Islamic sources were mostly measured with respect to
a zero meridian to the west of the known part of the inhabited world.
This included the meridian of the ‘Fortunate Isles’ (i.e., the Canaries,
Ptolemy’s traditional meridian of reference), the ‘shore of the sea’ (i.e.,
the westernmost coast of Africa, used in the huge new survey of ge-
ographical coordinates produced by the scholars working for the early
Abbasid caliph al-Ma↩mūn around 830 and taken to lie 10 degrees east
of the meridian of the Fortunate Isles), and in later centuries also the so-

9 See vanDalen et al., ‘The Chinese-Uighur Calendar’. For an edition and translation
of the text and tables in the Īlkhānī Zīj, see Isahaya, ‘The Tārīkh-i Qitā’. For the origin
of the Chinese calendar in Islamic sources, see Isahaya, ‘History and Provenance’.

10 Islamic astronomical handbooks with tables (in Arabic /Persian called zīj, pl. zījāt
or azyāj) were the most important tool for any practising astronomer or astrologer.
Their central part was a large set of tables for calculating planetary longitudes and
latitudes at any given time. Further tables for trigonometrical, spherical-astronomical
and specifically astrological functions also allowed the compilation of basic horoscopes
or a full-blown nativity book such as the one discussed here. For overviews of the
most important zījes and their contents, see Kennedy, ‘A Survey’ and King & Samsó,
‘Astronomical Handbooks and Tables’. A new, more extensive survey is being prepared
by the present author.

11 See Kennedy & Kennedy, Geographical Coordinates for ordered lists of the ge-
ographical coordinates in more than 80 Islamic sources. An extended and corrected
version of this work was prepared by the late Mercè Comes and unfortunately remains
unpublished. For a recent analysis of a geographical table making extensive use of the
data collected by the Kennedys, see van Dalen, ‘The Geographical Table’.
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called ‘meridian of water’ (used by scholars in thewestern-Islamicworld
as a result of a correction of earlier values for the length of the Mediter-
ranean).12 If planetary positions are calculated for a certain locality by
means of astronomical tables intended for another city, a correction for
the difference in geographical longitude between the two places needs
to be applied. For example, if al-Battānī’s tables for Raqqa (longitude
73;15◦ from the Fortunate Isles) are used to calculate a planetary longi-
tude at Baghdad (longitude 80◦), a correction for a longitude difference
of 6;45◦ in eastern direction must be carried out. Since a longitude dif-
ference of 15◦ corresponds to 1 hour, local noon at Baghdad precedes
noon in Raqqa by 27 minutes. Therefore the planetary position at noon
in Baghdad is found as that for 11h33m at Raqqa.

According to his Horoscope, Iskandar Sultan was born at Uzgand,2v: 4–8

now Uzgen in Kyrgyzstan. The geographical coordinates of this lo-
cality are given in the text as 102;50◦ east of the Fortunate Isles and
44;0◦ north. These are the coordinates attributed to the city in the ge-
ographical tables of such astronomical handbooks as the Īlkhānī Zīj by
Naṣīr al-Dīn al-Ṭūsī (Maragha, c. 1270), the Khāqānī Zīj by Ghiyāth
al-Dīn Jamshīd al-Kāshī (Kashan, c. 1410), and the Zīj of Ulugh Beg
(Samarkand, c.1440).13 However, the longitude was essentially already
found with al-Bīrūnī (active in Khwarazm and Afghanistan, c. 1000),
who placed Uzgand 92;50◦ east of the western shore of Africa, corre-
sponding to 102;50◦ east of the Fortunate Isles.14 In Section 7 below
I will show that the Īlkhānī Zīj was used for all calculations of planetary
longitudes in the Horoscope of Iskandar Sultan. Since the base locality
of the Īlkhānī Zīj is Maragha in northwestern Iran, a correction for the
difference in geographical longitude between that city and Uzgand needs
to be applied in all planetary calculations. Maragha is given a longitude
of 82;0◦ with respect to the Fortunate Isles in the Īlkhānī Zīj and most
later sources (whereas al-Bīrūnī had 73;20◦ with respect to the western

12 See Kennedy & Kennedy, Geographical Coordinates, p. xi, and Comes, ‘The
“Meridian of Water”’.

13 cf. Kennedy & Kennedy, Geographical Coordinates, pp. 510, 559, and 564. The
coordinates in the zījes of al-Ṭūsī, al-Kāshī and Ulugh Beg mostly stem from the myste-
rious Kitāb al-Aṭwāl wa-l-↪urūd li-l-Furs, which is itself lost but whose coordinates for
452 localities were quoted by the 14th-century prince and geographer Abū l-Fiḍā↩. This
work has tentatively been dated to the 13th century, although a large subset of its coor-
dinates are already found in the early 12th-century Dustūr al-munajjimīn. See Kennedy
& Kennedy, Geographical Coordinates, pp. xvii and 422–430; Sezgin, Geschichte des
Arabischen Schrifttums, vol. XIII, pp. 369–375, and van Dalen, ‘The Geographical Ta-
ble’, p. 544.

14 Kennedy & Kennedy, Geographical Coordinates, p. 459.
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shore of Africa), so that the correction amounts to 20;50◦. As we will
see, the planetary mean motions are in very good agreement with this
correction. However, the actual difference in geographical longitude
between Uzgand and Maragha amounts to as much as 27◦ (73;14◦ east
of Greenwich vs 46;13◦).

5. Trigonometric functions

In Islamic mathematics, the trigonometric functions sine and tangent
were usually expressed in a base circle with a radius of 60 units (rather
than the modern value 1 or various Indian values such as 150 and 3438
minutes).15 The resulting functions are conventionally denoted as Sin
and Tan, i.e., Sin x = 60 · sin x and Tan x = 60 · tan x, for example
Sin 60◦ = 51;57,41 ≈ 51.9615 and Tan 60◦ = 103;55,23 ≈ 103.9230.
As was explained in Section 2, in the original Persian text of the Horo-
scope, as well as in Islamic astronomical and astrological sources in gen-
eral, these two numbers would occur as 51 57 41 and 103 55 23 without
indication of the position of the sexagesimal point. As a result it may be
difficult in some cases to distinguish whether a base circle of 60 or 1 was
used. In the Horoscope of Iskandar Sultan there are only very few places
where we can definitely say which radius of the base circle was used for
the sines and tangents. These include a few calculations in which an
intermediate result is ‘lowered’ (munḥaṭṭ), i.e., its sexagesimal point is
shifted to the left by one sexagesimal position, which is equivalent to di-
viding by 60.16 Furthermore, one (non-existing) sine and one tangent are
expressed with a first sexagesimal digit larger than 60. Some references
occur to the ‘maximum sine’ (jayb-i a↪ẓam), but this could stand for 1
as well as for 60. On the other hand, there are many calculations where
a necessary division by the radius of the base circle (i.e., ‘lowering’) is
left out, typically in calculations such as δ(λ) = arcSin(Sin ε ·Sin λ/60),
where δ(λ) stands for the declination of a point on the ecliptic with lon-
gitude λ, and ε is the obliquity of the ecliptic (cf. Section 16). I will nev-

15 Ptolemy did not yet use the sine, but his table for chords in the Almagest likewise
uses a radius of 60 units. Islamic astronomers frequently tabulated the cotangent for base
7 or 12, thus giving the shadow of a traditional gnomon of length 7 feet or 12 fingers as
a function of the solar altitude. For a comprehensive history of trigonometry up to the
sixteenth century, see Van Brummelen, The Mathematics of the Heavens.

16 Calculations in which an intermediate result is explicitly ‘lowered’ are those of
the equation of daylight for the Moon and the five planets on fols 6r–v (Section 18,
but cf. p. 78 for the equation of daylight of fixed stars); an intermediate step in the
explanation of the calculation of the incidental horizon on fol. 6v:27, and the same step
in the actual calculations for the Moon and Saturn on fol. 7r:21, 27 (Section 19).
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ertheless assume that all trigonometric functions in the Horoscope were
expressed to base 60, and that in the above-mentioned cases the neces-
sary divisions by 60 were simply omitted from the text. Thus I will refer
to the sine of 60◦ as 51;57,41. However, in formulas I will write ‘sin’ and
‘tan’ throughout for the sake of clarity and will leave out the divisions
by 60 even in cases where they occur explicitly in the text. Thus I will
present the formula for the solar declination as δ(λ) = arcsin(sin ε·sin λ)
rather than the one given above. I will also write ‘cos x’ as an abbrevia-
tion for the Persian jayb-i tamām-i x (‘sine of the complement of x’).

6. Spherical Astronomy

Besides the computation of planetary longitudes and latitudes (for
which see Sections 7 and 8), most of the calculations in the Horoscope of
Iskandar are of angles or sides of spherical triangles. Ancient Greek and
medieval Islamic astronomers made use of various relations between the
angles and sides of spherical triangles that have been taught until recent
times, for instance, relations equivalent to the sine and cosine rules.
Ptolemy also used a more general tool, the Theorem of Menelaus, that
allowed the derivation of relations between the sides of several triangles
bounded by three or four great circles. In the later Islamic period the so-
called ‘Rule of Four’ became very popular. Below I present the rules for
spherical triangles that are used in the Horoscope and in our commentary
to calculate various quantities of astrological importance.17

I will start by giving some basic definitions. Planets and stars are
seen as if they move on a sphere around the centre of the Earth, called
‘the celestial sphere’. A great circle on a sphere is the intersection with
that sphere of any plane through its centre; the centre of a great circle
thus coincides with the centre of the sphere. As shown in Figure 1,
examples of great circles on the celestial sphere are the celestial equator,
which is perpendicular to the axis of revolution of the Earth and the

17 For a more extensive modern treatment the reader is referred to textbooks on spher-
ical astronomy such as Smart, Textbook. Van Brummelen, TheMathematics of the Heav-
ens also discusses many of the spherical-astronomical theorems used in Islamic astron-
omy. Debarnot, Kitāb Maqālīd contains a study of early Islamic spherical astronomy
and an edition and French translation of an important treatise by al-Bīrūnī (c.1000).
Kennedy, ‘Spherical Astronomy’ investigates the spherical astronomy of Ghiyāth al-
Dīn Jamshīd al-Kāshī (d. 1429), who finished his Khāqānī Zīj only a few years after
the Horoscope for Iskandar was completed and who worked for Iskandar in the same
period as the author of the Horoscope (Keshavarz, ‘The Horoscope’, p. 198 suggests
that the author of the Horoscope was the grandfather of the famous mathematician and
astronomer).
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Figure 1: The celestial sphere as seen from the outside

celestial sphere and hence lies in the same plane as the Earth’s equator;
the ecliptic, the annual apparent path of the Sun around the Earth; and
the horizon, which is parallel to the plane tangential to the Earth at the
position of the observer. A small circle is any circle on the sphere that
is not a great circle (and hence whose centre does not coincide with that
of the sphere). An example of a small circle on the celestial sphere is
the daily path of a star with non-zero declination (i.e., not located on the
equator), which lies parallel to the equator. The poles of a circle on the
sphere are the intersections with the sphere of the perpendicular through
the circle’s centre; thus, in Figure 1, P is a pole of the equator and of the
unspecified small circle. Elementary theorems on great circles that will
be used here include: ‘two great circles intersect in two opposite points
of the sphere (i.e., separated by arcs of 180◦ on either great circle)’.

A spherical angle is an angle included by two great circles on the
sphere at one of their points of intersection. It is hence equal to the
angle between the planes in which the two great circles lie. In Figure 1,
ε is the spherical angle between the equator and the ecliptic; it is called
the obliquity of the ecliptic and in Islamic sources has a size of between
23;30◦and 23;35◦ (Ptolemy’s value was 23;51,20◦ and the current value
is 23;26,11◦). The spherical angle φ̄ between the horizon and the equator
is the complement of the geographical latitude φ of the observer at the
centre of the celestial sphere.

A spherical triangle consists of the arcs of three great circles between
their points of intersection. The sides of a spherical triangle aremeasured
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by the angles that they subtend at the centre of the sphere. Note that thus
both angles and sides of a spherical triangle are measured in degrees
(or radians). In Figure 1, AB is the spherical triangle enclosed by
the equator, the ecliptic and the horizon; its sides are the angles ̸ EA,
̸ EB and ̸ AEB, where E is the centre of the Earth and of the celestial
sphere.

Now let a, b and c be the sides of a spherical triangle and A, B and
C the angles opposite a, b and c, respectively. If the triangle has one
or more right angles, we assume C = 90◦. When two triangles are
compared, the arcs of the second triangle are denoted by a ′, b ′ and c ′
and its angles by A ′, B ′ and C ′. The following rules can be shown to
hold:18

Sine rule. In every spherical triangle, we have
sin a
sinA

=
sin b
sinB

=
sin c
sinC

.

Cosine rule. In every spherical triangle, we have cos a = cos b ·
cos c + sin b · sin c · cosA, and analogous expressions for cos b and
cos c. In the case of a right-angled triangle (C = 90◦), the expression
for cos c generalizes to cos c = cos a · cos b, the Pythagorean formula
for spherical astronomical triangles.
Rule of Four. If a pair of right-angled spherical triangles ABC and
A ′B ′C ′ has an acute angle A = A ′ in common, then

sin a
sin c

=
sin a ′

sin c ′
and

tan a
sin b

=
tan a ′

sin b ′

‘Double-tangent rule’. In a right-angled triangle, we have tanA =
tan a/ sin b. This can be proved by means of the Rule of Four: Let
triangle A ′B ′C ′ be a right-angled triangle with angle A ′ equal to A and
side b ′ equal to 90◦. The desired rule now follows at once from the
tangent version of the Rule of Four, because sin b ′ = 1 and tan a ′ =
tanA ′ = tanA.

7. Planetary Longitudes

The computation of the positions of heavenly bodies lies at the foun-
dation of every practical astronomical and astrological activity. The Sun,

18 Note that no actual mathematical formulas are found in the Horoscope or any
other medieval mathematical or astronomical work. The procedures for calculating
the various quantities discussed in the Horoscope are all written out in words in the
primary sources. As indicated in Section 5, multiplications and divisions by 60, which
are necessary when calculating with the standard radius of the base circle in Greek and
Islamic trigonometry, are here omitted.
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the Moon, the planets visible to the naked eye, and the fixed stars are
seen by an observer on the Earth as if they move on a sphere around the
centre of the Earth, the celestial sphere (cf. Section 6 and see Figure 2).
In this model the daily rotation of the Earth around its axis is represented
by the daily rotation (in western direction) of the entire celestial sphere
around the axis of the equator. The annual rotation of the Earth around
the Sun is observed as an annual rotation of the Sun (in eastern direction)
around its path on the celestial sphere, the ecliptic. The point where the
Sun crosses the plane of the equator from south to north is the vernal
equinox (indicated by the symbol ), since it marks the time when day
and night have equal lengths at the start of spring. The point opposite it,
where the Sun crosses the plane of the equator from north to south, is the
autumnal equinox. The point where the Sun reaches its largest northern
distance from the equator is the summer solstice, the point opposite it
the winter solstice. The Moon (in a period of little less than a month)
and the five planets (in periods of one up to thirty years) also appear to
rotate around the Earth in eastern direction, similar to the Sun. However,
their positions periodically deviate from the ecliptic by up to around 8
degrees in northern or southern direction. Furthermore, the five planets
occasionally change the direction of their motion to become retrograde.
The fixed stars appear fixed with respect to each other (their ‘proper
motion’ only became known in modern times), but their positions with
respect to the ecliptic change very slowly in the course of time due to
the precession of the equinoxes.
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The positions of the heavenly bodies are generally measured with
respect to the ecliptic (although the positions of fixed stars are also oc-
casionally given in equatorial coordinates). The longitude of a heavenly
body is the distance between the vernal equinoctial point and the orthog-
onal projection of the body onto the ecliptic, measured in degrees along
the ecliptic and in eastern direction (in Figure 2, λ indicates the solar lon-
gitude). The latitude of a heavenly body is its distance from the ecliptic,
measured in degrees and orthogonally to the ecliptic (in Figure 2, β in-
dicates the latitudes of the Moon and of a fixed star). Starting with the
vernal equinox, the ecliptic is divided into the twelve signs of the zodiac,
which each have a length of 30◦. Thus an ecliptic longitude can be ex-
pressed in degrees from 0 to 359 as well as in degrees from 0 to 29 within
the zodiacal signs. For example, the true solar position at the prelimi-
nary time of Iskandar’s birth (fol. 2v:14) can be written as 42;38,45◦,
1s12;38,45◦, or 12;38,45◦ Taurus. As was explained in Section 2, in the
notation 1s12;38,45◦, the signs stand for multiples of 30◦. This implies
that a longitude in the first zodiacal sign, Aries, is indicated by 0s and a
longitude in the twelfth zodiacal sign, Pisces, by 11s .

For the calculations of horoscopes, the positions of the heavenly bod-
ies at the times of birth and conception were of particular importance. In
the Horoscope of Iskandar Sultan we find not only the longitudes them-
selves, but also details of their calculation. In particular, step-by-step
determinations of the following longitudes are included:
1. Solar longitude at the time of the nativity (fol. 2v, for determining the2v: 12–14

ascendant).
2. Longitude of Venus at the time of the nativity (fol. 2v, in applying2v: 25–27

Ptolemy’smethod for correcting the ascendant; see the computational
example on pp. 21–22).

3. Lunar longitude at the time of the nativity (fol. 4r, in applying Her-4r: 9–14

mes’s method for correcting the ascendant).
4. Solar longitude at midnight of the day of conception (idem).4r: 17–19

5. Lunar longitude at the exact time of conception (idem).4r: 22–26

6. Planetary longitudes at the time of the nativity (fol. 5r; because the5r: 1–2

preceding folio is missing, only the last part of the calculation for
Mercury has survived).

7. Planetary longitudes at the time of conception (fol. 16r).16r: 1–22

Judging from the intermediate computational steps included in the Horo-
scope, we may assume that all planetary positions in the work were de-
termined on the basis of the geocentric, geometrical planetary models as
originally developed by Ptolemy in his Almagest. These models have
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been explained in detail in numerous publications.19 Here I will concen-
trate on those properties of the models that are needed to understand the
consecutive steps in the calculations in the Horoscope and for determin-
ing the characteristics of the tables from which the planetary data were
computed.

7.1. Ptolemy’s Planetary Models

Themodel for the planets Saturn, Jupiter, Mars, andVenus is depicted
in Figure 3. The planet S moves with a uniform angular velocity and
counter-clockwise on a small circle, called the epicycle,20 with centre
H. The centre of the epicycle, in its turn, moves counter-clockwise on
a larger circle, called the deferent (‘carrier’), with centre F. Point F is
a distance e, the eccentricity, removed from the Earth E. The motion
of the centre of the epicycle is uniform with respect to a third point G,
a distance 2e removed from the Earth in the same direction as F. (The
circle aroundGwith the same unit radius as the deferent, the equant, has
been omitted from the figure for clarity). The apogee A of the deferent

19 See, for instance, Neugebauer, HAMA, Book I, Sections B–C; Pedersen, A Survey,
Chapters 5, 6, 9 and 10; and Van Brummelen, Mathematical Tables, Chapters 5, 8, 9
and 12. An English translation of the Almagest can be found in Toomer, Ptolemy’s
Almagest, in which the solar, lunar and planetary theories are developed in Books III–V
and IX–XII.

20 The Arabic/Persian terminology related to the models for planetary longitude is
listed in Table 1 on p. 18 together with literal and common English translations.
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English literal translation Arabic/Persian
deferent deferent, ‘apogee orb’ hāmil, falak-i awjī
dirigent ‘director’ mudīr
epicycle epicycle, epicyclic orb [falak-i] tadwīr
eccentricity* ‘between the two centres’ mā bayn al-markazayn
equant ‘equaliser of motion’ mu↪addil al-masīr
apogee (deferent) ‘farthest distance’ bu↪d-i ab↪ad, awj
perigee (deferent) perigee ḥaḍīḍ
mean centrum ‘centrum’ markaz
true centrum ‘adjusted centrum’ markaz-i mu↪addal
equation of centre ‘[first] equation’ ta↪dīl[-i awwal]
mean apogee (epicycle) apogee dhirwa
true apogee (epicycle) true apogee dhirwa-yi ḥaqīqī
mean anomaly ‘anomaly’ khāṣṣa
true anomaly ‘adjusted anomaly’ khāṣṣa-yi mu↪addala
equation of anomaly ‘second equation’ ta↪dīl-i thānī

(at average distance)
differences in the equation ‘difference’ ikhtilāf

of anomaly
interpolation minutes ‘minutes of the arguments’ daqā↩iq-i ḥiṣaṣ
equation of anomaly ‘adjusted equation’ ta↪dīl-i mu↪addal
corrected centrum ‘corrected centrum’ markaz-i muqawwam
longitude, true longitude ‘true position’ taqwīm[i- mu↪addal]
equation of time ‘equation of days and ta↪dīl al-ayyām bi-layālīhā

their nights’
being in direct motion mustaqīm
being in retrograde motion rāji↪

Table 1: Terminology of the models for planetary longitude (an asterisk indicates termi-
nology that does not actually occur in the Horoscope)

is the point furthest removed from the Earth, the perigee P is the point
nearest to the Earth. Note that A,G,F,E and P all lie on a straight line.

In order to calculate the longitude of the planet, we first find the
mean centrum (in the Horoscope simply called ‘centrum’), i.e., the an-
gle ̸ AGH (measured from the apogee) under which the epicycle centre
would be seen from point G. The mean centrum is a linear function of
time, which can be found from the tables of mean motion in any zīj. It is
converted to the true centrum (in the text: ‘adjusted centrum’), the an-
gle ̸ AEH (likewisemeasured from the apogee) under which the epicycle
centre is seen from the Earth, by adding or subtracting ̸ EHG, the equa-
tion of centre (in the text: ‘equation’ or ‘first equation’, to be understood
as ‘correction’).21 Note that the equation of centre must be subtracted

21 The planetary equations can be calculated by applying theorems of plane trigonom-
etry, in particular, the Theorem of Pythagoras, to right-angled triangles obtained by ex-
tending sides of some of the triangles seen in Figure 3; for full details, see the references
given in footnote 19.
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from the mean centrum if the epicycle centre is located in between the
apogee and the perigee of the deferent, i.e., if the mean centrum lies
between 0◦ and 180◦, and added otherwise.

We now consider the motion of the planet S on the epicycle. The
mean apogee Am of the epicycle is the intersection with the epicycle of
the extension of the line GH beyond H. Similarly, the true apogee Av is
the intersection with the epicycle of the extension of the line EH beyond
H. The mean apogee is the point of the epicycle relative to which the
planet moves with a uniform angular velocity, while the true apogee is
the point of the epicycle furthest removed from the Earth. Now themean
anomaly (in the text simply ‘anomaly’) of the planet is ̸ AmHS, measured
in the direction of the motion on the epicycle. It is a linear function of
time and can be found from the tables of meanmotion. The true anomaly
is ̸ AvHS, and can be found by adding ̸ AvHAm (which equals ̸ EHG,
i.e., the equation of centre) to, or subtracting it from, the mean anomaly.
Note that the equation of centre must be added to themean anomaly if the
epicycle is located between the apogee and the perigee of the deferent,
and subtracted otherwise. Consequently, the equation of centre must be
added to the mean anomaly if it is subtracted from the mean centrum,
and the other way around.

Next, the ‘corrected centrum’, the angle ̸ AES (measured from the
apogee of the deferent) under which the planet is seen from the Earth
is found by adding ̸ HES, the equation of anomaly, to, or subtracting
it from, the true centrum. Note that the equation must be added to the
true centrum if the planet is located between the apogee and the perigee
of the epicycle, i.e., if the true anomaly lies between 0◦ and 180◦, and
subtracted otherwise. Finally, the ‘longitude’ (ṭūl) or ‘true longitude’
(taqwīm) of the planet is the angle ̸ ES under which the planet is seen
from the Earth, but measured from the vernal equinoctial point. Thus
the true longitude is found from the corrected centrum by adding the
longitude of the apogee, ̸ EA. Note that the apogees of the Sun and
the five planets were assumed by Islamic astronomers to move slowly
with respect to the equinoxes at a speed of one degree in approximately
66, 66 23 or 70 Persian years of 365 days (in the Īlkhānī Zīj, the apogee
motion was taken equal to one degree in seventy Persian years).

In order to allow a rapid calculation of planetary positions for ar-
bitrary points in time, Ptolemy and most Islamic astronomers provided
a set of mathematical tables for the mean motions and the equations of
each planet. While the mean motions are linear functions of time, whose
tabulation is only complicated by the structure of the calendar used, the
equations are highly complex trigonometrical functions whose calcula-
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tion requires various look-ups in sine tables, calculations of square roots,
multiplications and divisions. From the tables of mean motion, values
are usually taken for the given numbers of years, months, days, and
hours, which then need to be added. The equation of centre or ‘first
equation’ is tabulated as a function of the mean centrum and can be read
off directly or is found by carrying out linear interpolation between two
consecutive values in the table.

However, the equation of anomaly is a function of both the true
centrum and the true anomaly. Rather than providing a huge double-
argument table, Ptolemy tabulated three types of functions of a single
argument, whose values must be combined in an ingenious approximate
procedure now generally called ‘Ptolemaic interpolation’. The ‘second
equation’, i.e., the equation of anomaly for the case that the epicycle
centre is at its average distance from the Earth, as well as the so-called
‘difference’ (ikhtilāf ), the differences between the equation of anomaly
at the average position of the epicycle centre and at one of the extreme
positions (namely, the apogee or perigee of the deferent), are tabulated
as a function of the true anomaly. Furthermore, interpolation coeffi-
cients (referred to as ‘interpolation minutes’, in the text daqā↩iq-i ḥiṣaṣ)
are provided as a function of the true centrum, i.e., the actual position
of the epicycle centre between its average position and one of the two
extremes. These are multiplied by the ‘difference’ and are then added
to, or subtracted from, the central equation of anomaly in order to obtain
an approximation to the actual equation of anomaly. The interpolation
minutes assume values between zero (for the value of the true centrum
corresponding to the average position of the epicycle centre) and one
(for the apogee and perigee of the deferent). In this way they produce
the correct equation of anomaly for the average as well as for the two ex-
treme positions of the epicycle centre, and intermediate values for other
positions.

In the remainder of this section, I will analyse most of the calcula-
tions of planetary longitudes in the Horoscope of Iskandar (which are
unfortunately incomplete, because one folio preceding fol. 5 is missing).
In spite of the occurrence of scribal and computational mistakes, which
often propagate through sequences of calculations, most of the data can
be seen to have been accurately computed on the basis of the standard
Ptolemaic planetary models. Furthermore, thanks to peculiarities of the
tabular values that are used in the calculations (such as the displacements
discussed below) and thanks to a comparison of the values themselves
with the most plausible sources for the Horoscope, it can be convinc-
ingly established that the planetary positions were systematically cal-
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culated on the basis of the tables in Naṣīr al-Dīn al-Ṭūsī’s Īlkhānī Zīj
(c.1270, written in Persian). As a matter of fact, this is a very plausible
source, since it was the most popular astronomical handbook in the east-
ern Islamic world from the late thirteenth to the middle of the fifteenth
century. It is extant in dozens of manuscripts, several of which are now
also available online.22 At the same time when ↪Imād al-munajjim com-
piled Iskandar’s Horoscope, Ghiyāth al-Dīn Jamshīd al-Kāshī (probably
↪Imād’s grandson, cf. footnote 17), was working on his improvement of
the Īlkhānī Zīj, the Zīj-i Khāqānī dar takmīl-i Zīj-i Īlkhānī. Furthermore,
in the two extant versions of the Horoscope of Iskandar’s half-brother
Rustam, whichwere compiled in 1419 and 1423, probably by relatives of
↪Imād al-munajjim, and which are in many respects similar to the Horo-
scope of Iskandar, the planetary positions are explicitly indicated to have
been calculated from the Īlkhānī Zīj.23 All following examples of calcu-
lations from the Horoscope are reconstructed on the basis of the tables in
the Īlkhānī Zīj, and occasional deviations from that work are explained.
Computational example: Calculation of the longitude of Venus at the time of 2v: 25–27

the nativity. The mean centrum of Venus is given in the text as 10s 19;18,25◦,
which is precisely the value that can be obtained from the mean motion param-
eters of the Īlkhānī Zīj for the exact mean time of the nativity, 10;40,13 hours
after noon on Sunday, 24 April 1384 (cf. p. 25).24 The given mean anomaly,
7s 18;6,27◦, differs by only 10′′ from a recomputation on the basis of the Īlkhānī
Zīj. With the above-mentioned value of the mean centrum the equation of cen-
tre can be found as 3;12,23◦ by carrying out a linear interpolation between
al-Ṭūsī’s tabular values 3;13◦ for mean centrum 10s 19◦ and 3;11◦ for 10s 20◦
(the exact outcome of this interpolation is 3;12,21,30◦). Now the true centrum

22 See, for example, Berlin, Staatsbibliothek Preußischer Kulturbesitz, Sprenger 1853
(https://www.qalamos.net/receive/DE1Book_manuscript_00014176); Tehran, Majlis
Library, MS 181 (https://dlib.ical.ir/site/catalogue/1033436); Los Angeles, University
of California in Los Angeles, Caro Minasian 1462 (https://digital.library.ucla.edu/ cat-
alog/ark:/21198/zz000wrfbd); and Paris, Bibliothèque nationale de France, persan 163
(https://archivesetmanuscrits.bnf.fr/ark:/12148/ cc1013621). Besides to the Paris copy,
I provide references to Cairo, Dār al-kutub, mīqāt fārisī 1, and to Istanbul, University
Library, F 1418. This latter manuscript was likewise copied for Iskandar Sultan and is
similarly beautifully executed.

23 The Horoscope of Rustam is extant in the manuscripts San Marino, Huntington
Library, HM 71897 (this was previously MS Persian 1 in the Burndy Library at MIT,
see now https://catalog.huntington.org/record=b1788124), and Qom, Mar↪ashī Library,
9233. The explicit reference to the Īlkhānī Zīj appears respectively on fol. 13r and on
fol. 15v. The Huntington Library manuscript, fol. 8r, also refers to the Īlkhānī Zīj in
connection with the correction of the ascendant (cf. Section 14).

24 The true time of the nativity, 11 pm, leads to a mean centrum of 10s 19;19,15◦.
Cf. Appendix C.

https://www.qalamos.net/receive/DE1Book_manuscript_00014176
https://dlib.ical.ir/site/catalogue/1033436
https://digital.library.ucla.edu/catalog/ark:/21198/zz000wrfbd
https://digital.library.ucla.edu/catalog/ark:/21198/zz000wrfbd
https://archivesetmanuscrits.bnf.fr/ark:/12148/cc1013621
https://catalog.huntington.org/record=b1788124
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is obtained as 10s 22;30,48◦ by adding the equation of centre to the mean cen-
trum, and the true anomaly as 7s 14;54,4◦ by subtracting the equation from the
mean anomaly.

Next the equation of anomaly is calculated as follows bymeans of Ptolemaic
interpolation. The equation of anomaly for the case that the epicycle centre is
at its average distance from the Earth is taken as a function of the true anomaly
from the table of the ‘second equation’. Since the tabular values for 7s 14;30◦
and for 7s 15;0◦ are both equal to 10s 14;1◦, no interpolation is needed in order
to find this same value.25 The difference in the equation of anomaly between the
average position of the epicycle centre and its perigee is found from the table for
the ‘difference’ (ikhtilāf ), again with the true anomaly as the argument. The
result is given in the Horoscope as 1;9,12◦, although the table in the Īlkhānī
Zīj displays 1;11◦ for 7s 14◦ and 1;10◦ for 7s 15◦ (the value in the text would
have been obtained if the tabular value for 7s 15◦ were 1;9 instead of 1;10).
Since the epicycle centre is neither at its average distance from the Earth nor in
its apogee or perigee, we need a Ptolemaic interpolation coefficient (daqā↩iq-
i ḥiṣaṣ) in order to find an approximation to the equation of anomaly for the
actual epicycle position in between the average distance and the apogee. This
coefficient, a function of the true centrum, is found from the Īlkhānī Zīj as 48′, in
agreement with the text. Now we multiply the coefficient by the ‘difference’ to
obtain 0;55,21◦. Following the rules in the Īlkhānī Zīj, this amount needs to be
added to the second equation, yielding the ‘adjusted equation’ as 10s 14;56,21◦.

The equation of anomaly is then added to the true centrum in order to obtain
the ‘corrected centrum’, i.e., the apparent position of Venus measured from the
apogee of its deferent, as 9s 7;27,9◦. By adding the longitude of the apogee
(‘farthest distance’) found in the text, 2s 19;50,47◦, likewise in agreement with
the Īlkhānī Zīj, we finally find the true longitude of Venus as 11s 27;17,56◦.

The models for the Sun, Moon and Mercury differ to some extent
from the general planetary model described above.26 The Sun moves
uniformly on an eccentric deferent (or, equivalently, it moves uniformly
on an epicycle whose centre moves at the same angular velocity as the
Sun on a circle around the Earth). The Moon moves in clockwise di-
rection on its epicycle, while the centre of its deferent moves clockwise
on a small circle around the Earth. In the Mercury model, the centre of

25 The equation of anomaly for Venus as given in the Horoscope is not actually of the
order of 10 zodiacal signs, but was ‘displaced’ by 12 signs (cf. Appendix B). Therefore
the second equation given in the text is in fact a subtractive value of 1s 15;59◦. Because
of the use of this displacement, the product of difference and interpolation minutes that
is found below must be added to the second equation, whereas normally it would be
subtracted.

26 See Toomer, Ptolemy’s Almagest, Books III–V and IX; Neugebauer, HAMA,
Book I, Sections B and C3; Pedersen, A Survey, Chapters 5, 6 and 10, pp. 309–328;
and Van Brummelen,Mathematical Tables, Chapters 8, 9 and 12, pp. 243–312.
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the deferent moves on a small circle around a point twice as far removed
from the Earth as the point of uniform motion and with a radius equal
to the eccentricity; this will be explained in more detail in Section 12 as
part of my attempt to explain the confused diagram of the orbs of Mer-
cury on fol. 5v of the manuscript of the Horoscope. The exact details of
the differences between the models do not concern us here. It suffices
to know that the Sun has only a single equation, and that the rules for
adding and subtracting the two lunar equations are somewhat different
from those for the planets. In spite of the differences in the Mercury
model, the use of its tables is identical to that for the other planets.

For practical calculations Islamic astronomers left Ptolemy’s plan-
etary models basically unchanged. However, they systematically im-
proved the underlying mean motion parameters on the basis of fresh
observations and incidentally also made adjustments to the eccentrici-
ties and epicycle radii. They continued a development already started
by Ptolemy in hisHandy Tables to make the tables for calculating plane-
tary positions more convenient to use, for example by applying so-called
‘displaced equations’ (see below). Finally, in particular during the thir-
teenth century and later, various alternative planetary models were de-
signed with the purpose of removing the non-uniformmotions that result
from making the motion of the epicycle centre uniform around a point
different from the centre of the deferent (see also Section 12).

7.2. Recomputation of the Planetary Longitudes in the Horoscope

The planetary data in the Horoscope of Iskandar have certain charac-
teristics that are typical for the source that was used for their calculation.
These include, in particular, the displacements, which make the plane-
tary equations always additive or always subtractive instead of additive
for one range of arguments and subtractive for another, and a further de-
velopment of displacements, the ‘mixed equations’. In this commentary
these two concepts will not be explained in every detail, but Appendix B
summarizes some of the specific properties of the displacements of the
planetary tables used for calculating the Horoscope and thus confirms
the Īlkhānī Zīj as the most likely source of the planetary data in the
Horoscope.27 In fact, the planetary equations used in the Horoscope can

27 A general discussion of displaced equations may be found in van Dalen, ‘The
Zīj-i Nāṣirī’, pp. 840–841, and van Dalen, Ptolemaic Tradition, pp. 408–410. Stud-
ies of displaced tables are included in Salam & Kennedy, ‘Solar and Lunar Tables’;
Saliba, ‘The Double-Argument Lunar Tables’; Saliba, ‘Computational Techniques’;
Saliba, ‘The Planetary Tables’, and, for the medieval Latin tradition, Chabás & Gold-
stein, ‘Displaced Tables’.
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be seen to be displaced precisely by the amounts also used in al-Ṭūsī’s
Īlkhānī Zīj, and to be of mixed type precisely where al-Ṭūsī uses equa-
tions of mixed type.

In particular for the time of conception (calculated in the text as16r: 1–22

1;35,10,52 hours after midnight on July 13, 1383; cf. Section 14) the
results of a recomputation on the basis of the Īlkhānī Zīj turn out to be
remarkable: most of the mean motions listed in the Horoscope differ
by at most one unit in the final sexagesimal digit (seconds for the Sun
and the Moon, minutes for the five planets) from positions calculated
on the basis of al-Ṭūsī’s parameters and a longitude difference between
Maragha and Uzgand of 20;50◦ (cf. Section 4). The small deviations
can be easily explained from minor inaccuracies in al-Ṭūsī’s mean mo-
tion tables and from the rounding errors in the four or five tabular values
that need to be added in each case. Inaccurate mean motion values for
the time of conception are: the mean centrum of Mars (text: 8s19;59◦,16r: 11

recomputation 9s19;59◦), the mean anomaly of Venus (text: 1s21;52◦,16r: 16

recomputation: 1s21;15◦), and the mean anomaly of Mercury (found16r: 19–20

from the first equation and the adjusted anomaly in the text as 11s6;0◦,
recomputation: 11s7;44◦). The mean lunar centrum is accurate if we16r: 3

assume that a correction of 0;30◦ was added to the value for the mean
lunar longitude found from the Īlkhānī Zīj. This addition is explicitly
mentioned in the calculation of the lunar longitude at the time of concep-
tion, but was also applied in the calculation for the time of the nativity
(both calculations appear in the context of Hermes’s method for the cor-
rection of the ascendant, see Section 14). This correction, together with
corrections for the other planets, were in fact suggested by other Islamic
scholars only a short time after the compilation of the Īlkhānī Zīj, for
instance by Quṭb al-Dīn al-Shīrāzī.28

The mean motions given in the Horoscope for the time of the nativ-
ity are somewhat more difficult to verify for various reasons. Firstly, as
was noted above, only the last part of the calculation of Mercury’s true
longitude is included in what is left of the section on the true planetary
positions at the time of the nativity (top of fol. 5r). Secondly, the solar
position is first calculated for 11 pm, the true time of the nativity, and2v: 12–14

then adjusted for the corresponding mean time by subtracting the equa-
tion of time,29 whereas the positions of all other planets are calculated

28 See, for example, the introduction of the Zīj-i Jāmi↪-i Bū Sā↪idī by Rukn al-Dīn
al-Āmulī (c.1455), Tehran, University Library, MS 5772, fols 1v–2r. These corrections
were studied in Savadi &NikfahmKhubravan, ‘Ḥarakat-i wasaṭ-i kawākib’, p. 373, with
an edition of al-Āmulī’s introduction on pp. 465–468.

29 For a brief explanation of these concepts, see Appendix C.
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directly for the mean time of the nativity. From the general table for
the equation of time in the Īlkhānī Zīj30 we find for the true solar lon-
gitude at the true time of the nativity (1s12;39,35◦) an equation equal 2v: 13

to 0;19,47 hours, implying that the mean time of the nativity was close
to 10;40,13 hours after noon. It is for this time that the mean motions
of the Moon and Venus, and therefore probably also those of the other 4r: 9–14

2v: 25–27planets, can be seen to have been calculated. Of the total of nine mean
motions for the time of the nativity given in the extant part of the Horo-
scope, only the lunar anomaly contains a large scribal error (0s19;0,52◦
instead of 0s19;5,52◦), but all others agree with the Īlkhānī Zīj to within
an accuracy of 10′′.

Also the solar, lunar and planetary equations given in the Horoscope
can be satisfactorily recomputed from the tables in the Īlkhānī Zīj. In
some cases, linear interpolation between two tabular values yields the
equations in the text to a precision of seconds (it can be verified that
the mean motions used as arguments for the interpolation were often
rounded or truncated to minutes); in other cases small errors, and occa-
sionally somewhat larger ones, were made. For instance, the given solar
equation values for the time of the nativity (3;29,58◦) and for midnight 2v: 12

of the day of conception (1;6,5◦) are accurate to seconds, but the value 4r: 18

for the corrected time of conception (1;5,44◦) contains an error of 14′′ 16r: 2

(correct: 1;5,58◦). The lunar equations of centre at the times of con- 16r: 3

ception (3;35,37◦) and birth (24;52,30◦) are correct to seconds except 4r: 10

for one common scribal mistake (37′′ for 32′′). The lunar equation of
anomaly, as well as the ‘equation difference’, the interpolation minutes,
and the correction for the inclination of the lunar orbit (the so-called
‘third equation’) are all accurate to within one or two seconds.

For the other planets, the typical error in the longitudes is of the order
of one minute, obviously because that is the precision of the tables for
the planetary equation of centre and equation of anomaly. A large error
occurs in the longitude of Mars at the time of conception because of the
above-mentioned mistake of a whole zodiacal sign in the mean centrum.
It can be verified that the equations of Mars were taken consistently with
the wrong centrum; the correct longitude would have been near 3s9;18◦.
A smaller error is found in the calculation of the longitude of Venus at
the time of conception: the equation of centre should have been 0;47◦
instead of 1;47◦, so that also the longitude becomes roughly one degree 16r: 16

too large. An overview of all planetary positions given in the Horoscope
is provided in Appendix F.

30 For instance, Paris, Bibliothèque nationale de France, persan 163, fol. 123r; Cairo,
Dār al-kutub, mīqāt fārisī 1, fol. 122r; or Istanbul, University Library, F 1418, fol. 237v.
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8. Planetary Latitudes

The Ptolemaic models for the planetary longitudes were devised un-
der the assumption that the planets move in the plane of the ecliptic.
However, the Moon and the five planets visible to the naked eye can
easily be observed to periodically move above and below the ecliptic
by an amount of up to around 8 degrees. The orthogonal distance of
any heavenly body from the ecliptic is called its ‘latitude’ (↪arḍ). The
lunar latitude can simply be modeled by giving the plane of the lunar
motion an inclination of approximately five degrees to the ecliptic. The
small correction to the lunar longitude that is necessary because of this
inclination was tabulated in many Islamic zījes under the name ‘third
equation’. The latitude theory for the five planets, which would be rel-
atively simple in a heliocentric system but becomes highly complicated
in a geocentrical model, is expounded in the last book of the Almagest.
By using another type of Ptolemaic interpolation, Ptolemy manages to
reduce the complicated oscillatory motions of the deferent and the epicy-
cle to a simple arithmetical solution with only three single-argument ta-
bles for each planet. As was shown in van Dalen, ‘Tables of Planetary
Latitude’, the latitude tables in Islamic zījes generally stayed close to
the Almagest. The setup of the tables was slightly modified in order to
make them easier to use, but in only very few cases were the underlying
parameter values based on new observations.31

Following the defective section on planetary longitudes in the Horo-
scope of Iskandar Sultan, the latitudes of theMoon and the five planets at5r: 9–29

the time of the nativity are calculated step by step. In order to reproduce
the calculations, I will now briefly explain the technical characteristics
of Ptolemy’s models for planetary latitude.32 For the Moon as well as
the planets, the points of intersection of the inclined deferent with the
plane of the ecliptic are called ‘nodes’ (jawzahar); the ‘ascending node’
(ra↩s, lit. ‘Head’) is the point of intersection where the lunar or plane-
tary epicycle centre passes the ecliptic from south to north, and the ‘de-
scending node’ (dhanab, lit. ‘Tail’) is the point where the epicycle centre
passes the ecliptic from north to south.

31 For a discussion of some of the Islamic observational programs that led to new
parameters for planetary latitudes, see Mozaffari, ‘Planetary Latitudes’.

32 More extensive explanations of the calculation of planetary latitudes according
to Ptolemy can be found, for example, in Toomer, Ptolemy’s Almagest, Book XIII;
Neugebauer, HAMA, Book I, Section C7, pp. 206–230; Pedersen, A Survey, Chapter 12;
Van Brummelen, Mathematical Tables, Chapter 14, pp. 338–373, and Van Brummelen,
‘The Tables of Planetary Latitudes’.
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Figure 4: Definition of the first and second diameter of the epicycle

We first refer to Figure 4, which depicts a planetary epicycle with
centre H. In this figure, E represents the Earth, S the planet, Av the true
apogee, and Pv the true perigee of the epicycle (cf. Section 7 and Fig-
ure 3). The first diameter of the epicycle, PvAv, is its intersection with
the plane perpendicular to the deferent that passes through the epicy-
cle centre and the Earth. The second diameter of the epicycle, MN, is
perpendicular to the first.

In Ptolemy’s model for the latitude of the superior planets, the defer-
ent is given a constant inclination to the plane of the ecliptic. Further-
more, the epicycle receives a small oscillatory motion around its second
diameter (i.e., bothAv andPv move alternately above and below the plane
of the deferent). Instead of carrying out the complicated calculation of
the resulting latitude for each pair of values for the true centrum and the
true anomaly, Ptolemy (and after him most Islamic astronomers) again
applies Ptolemaic interpolation: he tabulates the latitude factor caused
by the oscillation of the epicycle as a function of the true anomaly for
both the northernmost and the southermost position of the epicycle cen-
tre on the deferent, and then multiplies the result by interpolation co-
efficients depending on the position of the epicycle centre, i.e., on the
true centrum. Similar to the interpolation function for the equation of
anomaly (cf. Section 7.1), the latitude interpolation coefficients are equal
to zero when the epicycle centre is in one of the nodes and equal to one
when the epicycle centre is in the northernmost or southernmost point of
the deferent.

In the case of the inferior planets Venus and Mercury (see Figure 5),
also the deferent has a small oscillatory motion around the ecliptic plane,
called the inclination (Arabic mayl al-falak al-khārij al-markaz). This
motion has the same periodicity as that of the epicycle centre H on the
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Figure 5: Model for the latitude of the inferior planets

deferent in such a way that the epicycle centre of Venus is always north
of the ecliptic and that of Mercury always south. The epicycle of the in-
ferior planets oscillates around its second diameter (the deviation, Ara-
bic mayl) as well as around its first diameter (the slant, Arabic inḥirāf ).
These oscillations depend on the position of the epicycle centre on the
deferent in such a way that the deviation reaches its maximum and the
slant becomes zero when the epicycle centre is in one of the two nodes,
while the slant assumes its maximum and the deviation is zero when the
inclination of the deferent reaches one of its two maximum values (at
these moments the centre of the epicycle is at the apogee or perigee of
the deferent, which, only for the inferior planets, are precisely 90◦ re-
moved from the nodes). Since Ptolemy assumes that the three latitude
components of the inferior planets can be treated independently, the cal-
culation of the latitudes becomes relatively simple.33 The ‘first latitude’,
due to the inclination, is usually tabulated directly as a function of the
true centrum. The ‘second latitude’, due to the deviation, and the ‘third
latitude’, due to the slant, are both found by means of Ptolemaic inter-
polation as the product of a function of the true anomaly and an inter-
polation function of the true centrum. In the case of Mercury, an extra
addition or subtraction of a tenth of the obtained value for the slant is
carried out depending on whether the epicycle centre is located in the
northern or southern half of the deferent.

By comparing the calculations of the lunar and planetary latitudes
presented in the Horoscope of Iskandar with those expounded by Ptol-
emy in the Almagest, we can recognize the following characteristics of
the underlying planetary tables:

33 One of only very few Islamic authors who attempted a more exact calculation of
planetary latitudes was the grandson of the author of Iskandar’s Horoscope, Ghiyāth
al-Dīn Jamshīd al-Kāshī; see Van Brummelen, ‘Taking Latitude with Ptolemy’.
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1] Moon. The underlying maximum lunar latitude can be shown to be 5r: 9–10

precisely equal to 5◦: If β denotes the lunar latitude, βmax its maximum
value, and λn the latitude argument (ḥiṣṣa-yi ↪arḍ, the distance of the
Moon from the ascending lunar node), we have sin β(λn) = sin βmax ·
sin λn. Since the text gives the argument of latitude as 9s18;16,6◦ and
from this value finds the latitude as 4;44,52◦ south, it follows that βmax=
arcsin(sin β/ sin λn) ≈ arcsin(sin−4;44,52◦/ sin 288;16,6◦) ≈ 5;0,1. It
can be verified that linear interpolation between arguments 9s18◦ and
9s19◦ in the lunar latitude table in the Īlkhānī Zīj, which has 5;0,0 as its
maximum, produces exactly the value given in the text.
2] Superior planets. In the text an addition of 7◦ is carried out to find the 5r: 11–19

‘actual adjusted centrum’ (markaz-i mu↪addal-i ḥaqīqī) of Saturn from
its ‘adjusted centrum’ (markaz-i mu↪addal) before the latitude is calcu-
lated. For Jupiter, a similar addition of 12◦ is performed. These two
adjustments are indications of the displacements of 7◦ and 12◦ in the re-
spective equations of anomaly (cf. Appendix B). As we have seen above,
the latitudes of the superior planets are generally found by multiplying
the maximum northern or southern latitude (in the text ‘latitude’, ʿarḍ;
for Saturn mistakenly ‘argument of the latitude’, ḥiṣṣa-yi ↪arḍ) for the
calculated value of the true anomaly by interpolation minutes (daqā↩iq-i
ḥiṣaṣ-i ↪arḍ) that depend on the position of the epicycle centre on the
deferent. This position of the epicycle centre can be expressed by ei-
ther the true centrum (its distance from the apogee of the planet) or the
latitude argument (the distance of the epicycle centre from the ascend-
ing node). From the latitude calculations in the Horoscope of Iskandar
it can be noted that, in the zīj that was used, the interpolation minutes
were tabulated as a function of the true centrum rather than of the latitude
argument, since no conversion of the former to the latter is carried out.
The latitude tables for the superior planets in the Īlkhānī Zīj indeed have
the true centrum rather than the latitude argument as their arguments.

Linear interpolation in al-Ṭūsī’s tables for Saturn leads to an inter-
polation constant 0;31,51 (text: 0;31,50) for the indicated true centrum
6s8;9◦, and to a maximum southern latitude of 2;9,41◦ (text: 2;9,40◦)
for the indicated true anomaly 10s21;56◦ (note that the Īlkhānī Zīj tabu-
lates the maximum northern and southern latitudes for every six degrees
only). For Jupiter, the maximum southern latitude for the given true
anomaly 11s4;38◦ should have been 1;7,14◦ instead of the text’s 1;8,46◦
(this mistake could be explained by assuming that the linear interpo-
lation was carried out between the values 1;8◦ and 1;9◦ for arguments
10s24◦and 11s0◦ rather than between the values 1;8◦ and 1;7◦for argu-
ments 11s0◦ and 11s6◦). For Mars, the interpolation minutes found in
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the text are in full agreement with al-Ṭūsī. The given maximum north-
ern latitude, 4;17,40◦, can be obtained for a true anomaly of 183;10◦ (the
true anomaly of Mars at the time of the nativity, which is not mentioned
in the extant part of the Horoscope, can be calculated from the Īlkhānī
Zīj as 183;14◦).
3] Inferior planets. Of the three latitude components of Venus and Mer-5r: 19–29

cury, the inclination is taken directly from the table for the ‘first equa-
tion’, while the deviation is found as the product of the ‘argument of
the second latitude’ and the corresponding latitude interpolation func-
tion (daqā↩iq-i ḥiṣaṣ-i ↪arḍ-i thānī), and the slant as the product of the
‘argument of the third latitude’ and an interpolation function. The values
of the three components as given in the Horoscope of Iskandar can be
accurately reproduced from the tables in the Īlkhānī Zīj. For Mercury,
no explicit increase or decrease of the third latitude (slant) by a tenth
(as in the Almagest and early Islamic zījes) is indicated in the text. Also
this characteristic is in agreement with the Īlkhānī Zīj, which has incor-
porated the tenth in the table for the third latitude. By doing a reverse
lookup in al-Ṭūsī’s table with the second latitude 2;48,46◦ and the third
latitude 2;10,50◦ arrived at in the Horoscope, we find that the underly-
ing true anomaly must have been 144;35◦, in full agreement with the
second equation given in the section on longitudes (fol. 5r:1) and with a
recomputation based on the parameters of the Īlkhānī Zīj.

9. Direct and Retrograde Motion

At more or less regular intervals of time the five planets change the4v: 4–6

direction of their motion in the usual order of the zodiacal signs to be-
come retrograde. In the planetary model described in Section 7 (see
Figure 3 on p. 17), this occurs when the planet moves on the part of its
epicycle nearest to the Earth and its velocity on the epicycle results in a
backward component of its total motion larger than that contributed by
the motion in centrum (i.e., by the motion of the epicycle centre around
the deferent). As will be indicated in Section 12 for the particular case
of Mercury, Apollonius (3th c. BCE) already formulated criteria whether
a planet is in direct or in retrograde motion in the case of a simple epicy-
clemodel. Ptolemy adjusted these to his more complex planetarymodels
and included in the Almagest tables for the so-called ‘stations’ (maqām,
pl. maqāmāt), the points in time when the planets change from direct
motion (istiqāmat) to retrograde motion (rujū↪ or ruj↪a) or vice versa.34

34 The theory of Apollonius, its application to the planetary models by Ptolemy, and
the tables for the planetary stations found in the Almagest (see Toomer, Ptolemy’s Al-
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These tables, which were adopted by many Islamic astronomers and
were only subject to small changes in the course of time, provide for
any given value of the mean centrum the value of the true anomaly for
which a planet reaches one of its stations. Also al-Ṭūsī copied Ptolemy’s
tables into the Īlkhānī Zījwith only minor differences that are mostly due
to scribal mistakes.35 As an example, we will determine whether Mer-
cury was in direct or in retrograde motion at the time of the nativity (see
also Section 12).

Computational example: Determination of the phase of Mercury at the time of 3r: 3–4

birth of Iskandar Sultan. The true centrum of Mercury at the time of Iskan-
dar’s birth is given in the Horoscope as 6s 8;18,13◦ (fol. 5r:1). The table of the
first station of Mercury in the Īlkhānī Zīj displays the values 144;40◦ for true
centrum 5s 24◦ or 6s 6◦, and 144;39◦ for true centrum 5s 18◦ or 6s 12◦. By car-
rying out a linear interpolation between these values, we find that, for the above
value of the true centrum, Mercury reaches its first station for a true anomaly of
144;39,37◦, and hence its second station for a true anomaly of 215;20,23◦ (the
true anomalies for the first and second stations add up to 360◦). Thus Mercury
is in retrograde motion if, for the above value of the mean centrum, its true
anomaly is between 144;39,37◦ and 215;20,23◦. Since the true anomaly at the
time of Iskandar’s birth can be reconstructed from the values of the second and
third latitudes as 144;35◦ (see Section 8), we can confirm the statement found
in the Horoscope that Mercury will soon start its retrograde motion (we find the
difference in true anomaly to be 4 12

′, whereas the text gives 3′).
In a similar way it can be confirmed that of the other planets only Mars was 5v: 4–6

in retrograde motion at the time of the nativity, in accordance with the text of
the Horoscope.

magest, Book XII, Sections 1–8), are explained in Neugebauer, HAMA, Book I, Sec-
tion C6, pp. 183–206; Pedersen, A Survey, Chapter 11; and Van Brummelen,Mathemat-
ical Tables, Chapter 13, pp. 314–326.

35 Al-Ṭūsī’s table for the first station of the five planets (together with his tables for
the planetary sectors and planetary visibility) is found in Paris, Bibliothèque nationale
de France, persan 163, fol. 57v, and Istanbul, University Library, F 1418, fol. 173v.
The explanatory text in the second part of Section 5 of Treatise 2 is found on folios
22r and 126r, respectively. Al-Ṭūsī prescribes that the tables are to be used with the
true centrum rather than with the mean centrum, but does not seem to have modified
Ptolemy’s tables to account for this difference. He does not explicitly state that the
‘actual adjusted centrum’ (i.e., the true centrum corrected for the displacement of the
equation of centre, cf. Section 8) must be used, but he does add the displacements to the
true centrumwhen calculating the latitudes of Saturn and Jupiter. Note that in theHandy
Tables Ptolemy expressed the stations in terms of the mean anomaly rather than the true
anomaly, which led to clear differences from the tables in the Almagest. Further research
is necessary to establish whether al-Ṭūsī made a slip of the pen in his instructions or
deliberately used the Almagest tables with the true centrum as the argument.
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Figure 6: The sectors of the planetary deferents

10. Sectors of the Planets

The eccentric circle of the Sun and the deferents and epicycles of5v: 1–4

the Moon and the five planets are each divided into four sectors (niṭāq,
pl. niṭāqāt). The sectors of the eccentre or deferent (falak-i awj) are
referred to as awjī, lit. ‘of the apogee’, and those of the epicycle (falak-
i tadwīr) as tadwīrī. Planetary sectors were used by Abū Ma↪shar as
early as the ninth century and were tabulated in zījes by al-Bīrūnī and
many later astronomers.36 Naṣīr al-Dīn al-Ṭūsī defines the sectors in the
followingway in Treatise 2, Section 5 of his Īlkhānī Zīj.37 His definitions
are extremely brief; all explanations between square brackets have been
added by the present author.

For each planet the beginning of the first sector of the deferent is the
apogee (awj, point A in Figure 6), and the beginning of the third sector
the perigee (ḥaḍīḍ, point P). The beginnings of the second and fourth
sectors can be defined in two ways, ‘according to motion’ (bi ḥasb-i
sayr or bi ḥasb-i ḥarakat) and ‘according to distance’ (bi ḥasb-i bu↪d).
In order to explain these two concepts we need the following points in
the figure: E is the Earth (or, equivalently, the centre of the universe),
F the centre of the deferent, andG the centre of uniform motion. In both
cases, H indicates the beginning of the second sector.

36 See, for instance, Saffouri et al., Al-Bīrūnī on Transits, pp. 60–72 (with commen-
tary on pp. 161–166), and the study thereof in Kennedy, ‘The Sasanian Astronomical
Handbook’, pp. 247–253.

37 See, for example, Paris, Bibliothèque nationale de France, persan 163, fols 21v–
22r; Cairo, Dār al-kutub, mīqāt fārisī 1, fols 27v–28r; or Istanbul, University Library,
F 1418, fol. 126r.
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Figure 7: The sectors of the planetary epicycles

In the first case, the beginnings of the second and fourth sectors are
the points where the motion of the centre of the epicycle is ‘neither quick
nor slow’. [This means that the motion assumes its mean value, and
hence that the equation of centre reaches its maximum qmax. This occurs
when the epicycle centre lies on the line through F perpendicular to AP
(cf. Figure 6a) or, equivalently, when the mean centrum equals 90◦ +
1
2qmax and the true centrum 90◦ − 1

2qmax, or 360
◦ minus these values.]

In the case of sectors defined ‘according to distance’ (see Figure 6b),
the beginnings of the second and fourth sectors are the points where the
distance of the epicycle centreH from the centre of the universe (i.e., the
Earth E) is equal to its distance from the centre of the deferent F (i.e., to
the radius of the deferent). [This happens when the epicycle centre lies
on the line through the middle of EF and perpendicular to AP.]38

The beginning of the first sector of the epicycle of any planet is its
true apogee (dhirwa, Av in Figure 7), and the beginning of the third sector
its true perigee (ḥaḍīḍ, Pv ). The beginning of the second and fourth
sectors defined ‘according to motion’ are the points where the planet
has ‘only motion in centrum’. [These are the points where the equation
of anomaly does not change, i.e., where it reaches its maximum value.
They can be found as the points where the tangents extending from the
centre of the universe (E) touch the epicycle.] Defined ‘according to

38 The same definitions are valid for the plain eccentric model of the Sun and for the
slightly more complicated models for the Moon and Mercury. However, for the latter
two the actual calculations of the beginnings of the second and fourth sectors are more
complex.
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distance’, the second and fourth sectors are the points of the epicycle
where the distance of the planet from the Earth is equal to the distance
of the epicycle centre from the Earth.

Planets in the first and second sectors of the eccentric circle or the
epicycle are called ‘descending’ (hābiṭ), while those in the third and
fourth sectors are called ‘ascending’ (ṣā↪id). According to the Īlkhānī
Zīj, planets in the fourth and first sectors are also called ‘high’ (musta↪lī)
and those in the second and third sectors ‘low’ (munkhafaḍ), but these
terms are not used in the Horoscope of Iskandar.

The Īlkhānī Zīj provides a table displaying for each planet the begin-
nings of the sectors of the eccentric circle and the epicycle expressed in
values of the true centrum and the true anomaly respectively.39

It can be verified that all indications of sectors and ascendance or5v: 1–4

descendance given in the Horoscope of Iskandar for the time of his birth
are correct, except that Venus is in the fourth sector of its eccentre and in
the third sector of its epicycle rather than the other way around. When
using the tables for the sectors in the Īlkhānī Zīj, one needs to take into
account that the true (‘adjusted’) centrums of Saturn and Jupiter as given
in the text are displaced by 7◦ and 12◦ respectively. As we have seen in
Section 8, the ‘actual adjusted centrums’ need to be determined when
one calculates the planetary latitudes, and likewise for determining the
sectors and the stations (cf. Section 9).

11. Comets

Many zījes contain a table for the motion of the comet Kayd together5v: 7

with positions at a given epoch for six or seven different comets (dhawāt-
i adhnāb, lit. ‘[stars] having tails’). The Īlkhānī Zīj does not contain
such a table, but the contemporary zīj of Jamāl al-Dīn Abū al-Qāsim
ibn Maḥfūẓ al-munajjim al-Baghdādī, written in 1285/86 and extant in
a unique manuscript in Paris, provides complete information on the po-
sitions and the motions of the same seven comets that are also men-
tioned in the Horoscope.40 In nearly all zījes the motion of the comets
amounts to exactly −2◦30′ in a Persian year, the minus indicating that,

39 See, for example, Paris, Bibliothèque nationale de France, persan 163, fol. 57v, and
Istanbul, University Library, F 1418, fol. 173r. The table was reproduced in Kennedy,
‘The Sasanian Astronomical Handbook’, pp. 250–252, where it was already noticed to
be very inaccurate and of a structure different from al-Bīrūnī’s tables.

40 See Paris, Bibliothèque nationale de France, arabe 2486, fols 98v–100r. This
material was analysed in Kennedy, ‘Comets’, pp. 48–49. Kennedy transliterates the
names of the comets as follows: Ghaṭayṭ, ↪Azīm, Sarmūs or Sar-i Mūsh, Kilāb, Laḥyān,
Dhū al-Dhawāba, and Kayd.
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as in the case of the lunar nodes, the motion takes place in the oppo-
site direction of the signs of the zodiac. From al-Baghdādī’s positions
for the beginning of the year 631 Yazdigird (10 January 1262), repro-
duced by Kennedy, we find the following positions for the time of birth
of Iskandar Sultan (with the names of the comets spelled as in the Horo-
scope): Ghaṭīẓ 1s9;49◦, Gharīm 11s28;35◦, Sar-i Mūsh 6s24;7◦, Kalāb
10s6;39◦, Laḥyānī 10s6;48◦, Dū dhawāba 10s4;5◦, Kayd 4s23;28,4◦. In
the text of the Horoscope the places for the longitudes were all left blank,
and in the table with positions for the time of birth on fols 16v–17r the
comets are not included.

12. The Configuration of Mercury

A coloured diagram on fol. 5v of the Horoscope (see Figure 8) shows 5v

the configuration of the orbs of Mercury at the time of the nativity. Al-
though this time may have been favourable for the native, it was not
particularly convenient for drawing the configuration of Mercury, since
many of the lines in the diagram almost coincide. The interpretation of
the diagram is made even more difficult by the fact that the letters in-
dicating points, circles and arcs were omitted from the manuscript, and
that some of the orbs seem to have been drawn incorrectly. Figure 9
reproduces the configuration depicted in the manuscript with the mean
centrum increased from 6s7;53◦ to 7s0◦ in order to improve clarity. The
letters have been inserted as adequately as possible on the basis of the
description in the text,41 small question marks indicating that the place-
ment is not unambiguously defined. This happens, in particular, in cases
where a letter occurs only once in the definition of a circle (for example,
points Y andW). The letters thā↩ (Θ in Figure 9), dāl (D), and qāf (Q) are
used for two different points in the configuration, and the letter ↪ayn (O)
for three different points. These multiple occurrences are indicated by
means of single and double primes. In some other cases where the same
letter appeared to be used for multiple points, the ambiguity could be re-
solved by applying plausible corrections of scribal errors (in particular,
confusion of ṭā↩ط and ẓā↩ظ and of ↪ayn ع and ghayn ;غ cf. footnote 41).

41 The Arabic letters have been transcribed according to the system proposed by
Kennedy and Hermelink; see Kennedy, ‘Transcription’. Note that the following letters
can easily be confused in the manuscripts because their Arabic equivalents differ only
by diacritical dots: B, U and Θ (bā↩, tā↩ and thā↩); G, H and J (jīm, ḥā↩ and khā↩); D and
Φ (dāl and dhāl); Z and R (zā↩ and rā↩); T and V (ṭā↩ and ẓā↩); S and X (sīn and shīn);
O and I (↪ayn and ghayn); F and Q (fā↩ and qāf ); and C and Σ (ṣād and ḍād). From the
length of this list it will be clear that identifying the letters in Arabic or Persian diagrams
is often a nontrivial matter.
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Figure 8: The configuration of Mercury as depicted in the manuscript of the Horoscope
of Iskandar Sultan (London, Wellcome Library, Persian 474, fol. 5v)

As was mentioned in Section 7, Ptolemy’s model for Mercury is
somewhat different from that for the other four planets depicted in Fig-
ure 3 on page 17. AlsoMercury (indicated by pointU in Figure 9) moves
with a uniform angular velocity and counter-clockwise on an epicycle,
whose centre Θ moves with a uniform angular velocity and counter-
clockwise on a deferent (in Figure 9 indicated by ‘Ptolemaic deferent’
for reasons that will be explained below). However, for Mercury the
centreM of the deferent is not fixed: it moves with the same angular ve-
locity as the epicycle centre but in opposite (i.e., clockwise) direction on
a small circle KMS with centre L. This point L is a distance 2e removed
from the Earth E, where e is Mercury’s eccentricity, i.e., the distance of
its centre of uniform motion S from the Earth. The radius of the small
circle carrying the centre of the deferent is also equal to e, so that the
distance ofM from the Earth varies between e and 3e. It can be verified
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Figure 9: Reconstruction of the configuration of Mercury (with the mean centrum
changed from 6s 7;53◦ to 7s 0◦ for greater clarity). Legend:

E Earth (‘centre of the world’) T perigee of the dirigent
U Mercury H ‘farthest point’ of the deferent
BD horizon FQVU epicycle
OQ ′ ecliptic meridian circle Θ epicycle centre
ABG outer parecliptic F mean apogee of epicycle
WZ inner parecliptic Q true apogee of epicycle
L centre of the dirigent and ̸ ASΘ mean centrum

the small circle KMS ̸ AEΘ true centrum (= arc ABI)
AHT outer dirigent ̸ EΘS equation of centre
ZY inner dirigent ̸ FΘU mean anomaly
M deferent centre ̸ QΘU true anomaly
KMS carrier of the deferent centre ̸ ΘEU equation of anomaly
HN outer deferent ̸ AEU ‘corrected centrum’ (= arc ABGIX)
O ′D ′ inner deferent V intersection of line EU with the epicycle
S centre of the equant Θ ′ beginning of the 2nd sector of the deferent
A apogee of dirigent and deferent O ′′ beginning of the 4th sector of the deferent
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that, as a result of this model, Mercury reaches its nearest position to
the Earth twice during each revolution rather than once as for the other
planets.42

The diagram of the configuration of Mercury in the Horoscope of
Iskandar Sultan basically depicts Ptolemy’s model. However, ↪Imād al-
munajjim Maḥmūd al-Kāshī followed a cosmological implementation
of the model that had been described by various astronomers in the thir-
teenth and fourteenth centuries, most prominently by Naṣīr al-Dīn al-
Ṭūsī in his Tadhkira fī ↪ilm al-hay↩a (Memoir on Astronomy, written be-
tween 1261 and 1274).43 Rather than investigating of which source pre-
cisely ↪Imād made use, I will only describe the relevant characteristics of
the planetary models in the Tadhkira and discuss to which extent these
can be recognized in the diagram in the Horoscope.

Already some of the earliest Islamic astronomers criticized Ptolemy’s
planetary models as found in the Almagest for the following two reasons.
First, the fact that the centre of uniform motion of the epicycle centre
of the five planets is different from the centre of their circular paths
violates the principle of uniform motion on circles as formulated by
Aristotle. Secondly, the mathematical models from the Almagest lack
a physical interpretation in which the universe consists completely of
solid bodies (a first step in this direction was in fact already made by
Ptolemy himself in the Planetary Hypotheses). The Tadhkira was one
of a number of works by Islamic scholars in which solutions for the
so-called ‘difficulties’ (ishkālāt) related to non-uniform motion were
sought and a physical basis for Ptolemy’s models was given. Thus in the
Tadhkira the circles representing the ecliptic and the planetary deferents
and equants are replaced by orbs (falak, pl. aflāk) that are solid bodies
with a certain thickness and are bounded by an inner and outer spherical
surface. Furthermore, the non-uniform motion of the epicycle centres
on the deferent is replaced by a combination of uniform motions (the so-
called Ṭūsī couple) producing exactly the same positions of the planets
as Ptolemy’s models.44

42 More details of the Mercury model can be found in Toomer, Ptolemy’s Almagest,
Book IX, pp.419–467; Neugebauer,HAMA, Book I, Section C3, pp.158–169; Pedersen,
A Survey, Chapter 10; and Van Brummelen,Mathematical Tables, Chapter 12, pp. 247–
253.

43 For an edition and translation of the Tadhkira with extensive commentary and
ample background information, see Ragep,Memoir on Astronomy.

44 The Ṭūsī couple is discussed in detail in Ragep, ‘The Two Versions’. Other Is-
lamic astronomers attempted to solve the ‘difficulties’ of Ptolemy’s models by making
different types of modifications, such as the introduction of additional epicycles. A
particularly interesting example are the planetary models of Ibn al-Shāṭir (Damascus,
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Both the diagram in the Horoscope of Iskandar and its description in
the text make clear that a representation with solid orbs was intended. In
fact, the text mentions an inner (‘concave’, muqa↪↪ar) and outer (‘con-
vex’, muḥaddab) parecliptic (mumaththal), dirigent (mudīr), and defer-
ent (ḥāmil). Note that the parecliptic represents the ecliptic of Ptolemy’s
plane planetary model, and the dirigent the motion of the deferent cen-
tre on a small eccentric circle (see below). The epicycle lies within the
deferent, the deferent moves within the dirigent, and the dirigent orb lies
fixed within the parecliptic. Although no inner and outer epicycles occur
explicitly in the text, the diagram does show two circles for the epicycle
that enclose the planet, which might give a hint as to the actual source
used by the author. For somewhat greater clarity, in the reconstruction
of the configuration in Figure 9, I have shaded the deferent orb, in whose
middle lies the ‘Ptolemaic deferent’, i.e., the actual circular path of the
epicycle centre, which is not referred to in the text of the Horoscope.

The explanation in the text starts by fixing the configuration of 5v: 10–27

Mercury with respect to the horizon. BD is the intersection of the
(par)ecliptic plane with the horizon, and OQ ′, perpendicular to BD, that
with the ecliptic meridian circle (‘midheaven circle of visibility’,wasaṭ-i
samā↩-i ru↩yat), i.e., the circle through the poles of the horizon and those
of the ecliptic. The use of the letters ↪ayn and qāf (O and Q) for the
ecliptic meridian is not in agreement with the later occurrences of these
letters. Circle ABG is the outer parecliptic, andWZ the inner parecliptic;
both have the Earth E (‘the centre of the universe’) as centre. The cir-
cle AHT is the outer dirigent, and ZY the inner dirigent; both are circles
around L, the centre of the small circle KMS that carries the centre of
the deferent. Circles HN and O ′D ′ (the use of the letters O and D here
is inconsistent with their previous and later occurrence45) are the outer
and inner deferent, which both have point M on the small circle around

c.1350), which were shown to be mathematically equivalent to those of Copernicus
(c.1500). More information on non-Ptolemaic planetary models in the Islamic world
can be found, for example, in: Kennedy, ‘Late Medieval Planetary Theory’ and the
publications mentioned in footnote 1 of that article; Saliba, A History; Saliba, ‘Arabic
Planetary Theories’, and Nikfahm-Khubravan & Ragep, ‘The Mercury Models’.

45 O occurs as a point on the ecliptic meridian, as the beginning of the fourth sector of
Mercury’s eccentric orb, and here as a point on the inner deferent. Although theoretically
possible, it seems improbable that two of these occurrences indicate the same point, since
the endpoint of the ecliptic meridian will usually be indicated on the parecliptic and the
beginning of the fourth sector on the outer deferent. Similarly, the pointD on the horizon
will usually be indicated on the parecliptic and not on the inner deferent. In this case, a
confusion with the letter dhāl may be possible, since that letter is not used for any other
points.
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L as their centre. The fixed point A is the apogee of the dirigent and T
its perigee. Point H is the movable point on the deferent that is farthest
removed from the centre L of the small circle KMS and hence indicates
the direction of the deferent centreM as seen from L. Finally, point S is
the centre of the equant (mu↪addil al-masīr), i.e., the centre of uniform
motion of the epicycle centre.

Now we consider the epicycle FQVUwith centre Θ (the use ofQ and5v: 25–29

Θ here is not in agreement with their previous and later occurrence). U is
the body of the planet, F (on the extension of line SΘ) the mean apogee
of the epicycle, and Q (on the extension of line EΘ) the true apogee.
̸ ASΘ or ̸ ASF, measured in counter-clockwise direction, is the mean
centrum. Therefore ̸ TSF is the excess of the mean centrum over 180◦,
as stated in the text. As was mentioned above, the deferent centreM has
the same angular velocity on the small circle KMS as the centre of the
epicycle Θ on the deferent, but in opposite direction. SinceM is at point
K when the epicycle centre is at the apogee A of the deferent, it follows
that ̸ KLM, measured in clockwise direction, is equal to ̸ ASF, i.e., to
the mean centrum. Thus ̸ TLH is the excess of the mean centrum over
180◦, and is hence equal to ̸ FST.

The true centrum is ̸ AEΘ or ̸ AEQ, which differs from the mean5v: 29–3r: 3

centrum by ̸ EΘS, the equation of centre (in the text: ‘first equation’).
Note that the true centrum is measured by the arc ABI on the parecliptic.
The mean anomaly of the planet is ̸ FΘU, and its true anomaly ̸ QΘU.
Thus the difference between mean anomaly and true anomaly is ̸ FΘQ,
measured by arc FQ on the epicycle, which is equal to ̸ EΘS, i.e., to the
equation of centre. Then the ‘corrected centrum’ is the angle ̸ AEU un-
der which the planet is seen from the Earth (measured by the arc ABGIX
on the parecliptic). It is obtained by adding the equation of anomaly
(‘second equation’), ̸ ΘEU, to the true centrum. The longitude or ‘true
position’ (taqwīm) of Mercury, finally, is measured by the parecliptic
arc between the vernal equinoctial point (not shown in the diagram and
in Figure 9) and X. Note that the line EUX indicating the planetary lon-
gitude is clearly drawn in black in the diagram in the Horoscope.

The passage in the text concerning Mercury’s direct and retrograde3r: 3–6

motion has already been discussed in Section 9, where we calculated that
the planet will reach its first station when its true anomaly increases by
412 more minutes, rather than the text’s 3 minutes. The statement about
the ratio of 1

2UV to UE refers to the Theorem of Apollonius mentioned
in Section 9. Here V is the point of intersection of the extension of line
EU with the epicycle. For a simple epicycle model, Apollonius showed
that the planet reaches its station when the ratio of 1

2UV to UE is equal
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to the ratio of the planet’s mean motion in longitude to its mean mo-
tion in anomaly.46 There is no reason to believe that ↪Imād al-munajjim
Maḥmūd al-Kāshī in fact calculated these ratios, since he could derive
the necessary information from the table of planetary stations in any zīj.

The section on the configuration of the orbs of Mercury finishes by 3r: 6–13

indicating the sectors of the eccentric orb and the epicycle of Mercury
(cf. Section 10). The first and third sectors of the eccentric orb are
said to start at points A and T, the apogee and perigee of the deferent.
The second sector is said to start at a point Θ ′ (this cannot possibly be
the same as the epicycle centre Θ) ‘at the end of the golden line’. The
fourth sector starts at O ′′ (certainly different from O and probably also
from O ′, cf. footnote 45), which thus lies at the other end of the golden
line. Unfortunately, the golden line is missing from the diagram in the
manuscript or is invisible because the background of the diagram is also
painted in gold. The line is in any case perpendicular to the apsidal line
AT. Since the criterium used for the sectors is that ‘according to motion’,
as is stated on fol. 3r:11, the end points of the golden line signify the
points where Mercury’s equation of centre reaches its maximum value.
These can be shown to correspond to values of the true centrum equal to
approximately 92◦ and 268◦.

The points where the equation of anomaly of Mercury reaches its
maximum value can simply be determined by drawing tangents to the
epicycle extending from the Earth E. Also these were supposed to have
been drawn in gold in the diagram in the Horoscope, but are likewise
missing or invisible. The first sector of the epicycle starts at the true
apogeeQ, the third sector at the true perigee J, and the second and fourth
sectors at the two tangent points.

The reconstruction shows that the following elements are correctly
drawn in the manuscript diagram (cf. Figure 8 on p. 36):
● the location of the horizon (BD, horizontal black line) and the ecliptic
meridian (OQ ′, vertical black line);

● the inner parecliptic (small circle in black on red) and the outer par-
ecliptic (outermost circle in red, with graduation);

● the inner and outer dirigent (two circles in black around the centre of
the small circle in the middle of the diagram);

● the small circle carrying the centre of the deferent (in red);
● the apsidal line AT (in red, cutting the epicycle somewhat to the left
of its centre; this is the only line extending through the upper half of
the diagram);

46 See, for instance, Pedersen, A Survey, pp. 331–338.



42 BENNO VAN DALEN

● the line LH indicating the direction of the deferent centre M as seen
from the centre L of the small circle carryingM (in red, to the left of
the apsidal line AT and likewise cutting the epicycle);

● the lines SΘF and EΘQ, from which respectively the mean anomaly
and the true anomaly are measured (in red, practically coinciding
within the epicycle);

● the line ΘU connecting the epicycle centre with the planet and thus
indicating its mean anomaly and true anomaly (in red).

The inner deferent (in red) seems to have been incorrectly drawn in
between the inner parecliptic and the inner dirigent (note that the centre
of the red circle in between these two orbs is in fact a point on the
small circle carrying the deferent centre). The outer deferent is missing
completely. The epicycle has been drawn with an inner and an outer
surface, although these are not mentioned in the text.

In spite of the few inaccuracies in the orbs, the diagram in the Horo-
scope turns out to be also numerically a highly accurate representation
of the actual configuration of Mercury at the time of birth of Iskandar.
For instance, the distance of the apogee A from the ascendant B is 58◦
in the diagram and close to 57◦ according to the numerical data in the
text. The true centrum is drawn in the diagram as approximately 6s7.4◦
and is equal to 6s7;53◦ according to the Īlkhānī Zīj. The mean anomaly
can be calculated as 145◦ and is close to 146◦ according to the diagram.
Finally, the equation of anomaly is calculated in the text to be 18;43◦
and can be measured from the diagram as 19.5◦. (As was explained
above, I have chosen to reconstruct the diagram for a mean anomaly
equal to 7s0◦, since otherwise all lines through the centre of the epicy-
cle Θ would practically coincide. Therefore the above-mentioned angles
from the text are slightly different in Figure 9.)

13. The Ascendant

The ascendant or horoscopus (ṭāli↪, pl. ṭawāli↪), the rising point of
the ecliptic at a given time, is of prime importance in astrology. It is the
most significant indicator for making predictions about the character of
a newborn child and events in his or her life, and it lies at the basis of sys-
tems for dividing the ecliptic into twelve astrological houses, which are
used to make further types of predictions. Since the exact time of birth
is rarely known and the degree of the ascendant changes very rapidly in
the course of time, several special methods, called namūdār, were pro-
posed for correcting the ascendant at the time of birth, which are here
discussed in Section 14.
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Figure 10: Definition of the four cardines: ascendant, descendant, upper midheaven,
and lower midheaven. The arrow indicates the daily rotation of the celestial sphere.

At any given time, the ascendant is the eastern point of intersection of
the horizon and the ecliptic (see Figure 10). Similarly, the descendant,
the setting point of the ecliptic, is the western point of intersection of
the horizon and the ecliptic. The point of the ecliptic that culminates at
the given time, i.e., the southern point of intersection of the local merid-
ian and the ecliptic, is upper midheaven (‘midheaven’, wasaṭ al-samā),
while the northern point of intersection of the meridian and the ecliptic is
lower midheaven (Arabic rābiʿ ‘fourth [house]’, Latin imum coeli). The
four points thus defined are the cardines or ‘cardinal points’ (in Ara-
bic watad ‘pivot’, pl. awtād). Note that, as the points of intersection of
two great circles, the ascendant and the descendant, as well as upper and
lower midheaven, are 180◦ removed from each other (cf. Section 6). On
the other hand, the distances between the ascendant or descendant and
upper or lower midheaven vary in the course of a day (being 90◦ when
the equinoctial points cross the horizon).

Right and Oblique Ascensions

In order to calculate the position of the ascendant at a given time
(as well as many other quantities in spherical astronomy), Greek and
Islamic astronomers used two extremely convenient functions, namely
the oblique ascension and the right ascension (the latter being a special
case of the former). The oblique ascension projects a point on the ecliptic
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Figure 11: Right and oblique ascensions

(given by its longitudemeasured from the vernal equinox) onto a point of
the equator (indicated by the equatorial arc between the vernal equinox
and the projection) in such a way that both points rise simultaneously at
the locality concerned. For example, in Figure 11 the ecliptic point A
with longitude A is projected on point B of the equator, which crosses
the horizon at the same time; hence the oblique ascension of point A is
the equatorial arcB.

The oblique ascension depends on two parameters, namely the obliq-
uity of the ecliptic ε and the geographical latitude of the locality φ. In
the special case that the latitude is 0◦ (and hence the horizon is perpen-
dicular to the equator), the oblique ascension is called right ascension
and simply represents an orthogonal projection from the ecliptic onto
the equator. In Figure 11 the horizon then coincides with the declination
circle through A, the point of the equator rising simultaneously with A is
C, and the right ascension is the equatorial arcC.

In Arabic and Persian the oblique ascension is calledmaṭāli↪ al-burūj
bi balad ormaṭāli↪ al-burūj bi ↪arḍ al-balad (‘ascensions of the zodiacal
signs for the latitude of the locality’) and the right ascension maṭāli↪ al-
burūj bi l-falak al-mustaqīm (‘ascensions of the zodiacal signs at sphaera
recta’); both are occasionally abbreviated as matāli↪ al-burūj (‘ascen-
sions of the zodiacal signs’) when it is clear from the context which as-
cension is meant.47

47 In this commentary, we do not need the actual methods for calculating the right
and oblique ascensions. The right ascension α(λ) for a point with ecliptic longitude λ
can be found from tan α(λ) = tan λ · cos ε or sin α = tan δ(λ)/ tan ε, where ε is the
obliquity of the ecliptic and δ the declination (cf. Section 16). The oblique ascension
is obtained as the sum or difference of the right ascension and the equation of daylight
(cf. Section 18). See also Neugebauer, HAMA, Book I, Sections A3 and A4, pp. 30–
45; Pedersen, A Survey, pp. 99–101 and 110–115; and Van Brummelen, Mathematical
Tables, pp. 111–119.
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By the above definitions, the oblique ascension maps the ascendant
onto the rising point of the equator (i.e., the east point) and the descen-
dant onto the setting point (the west point). These are both 90◦ removed
from the meridian, and hence from the upper and lower culminating
points of the equator. It follows that, by working on the equator, we
can easily find the rising and setting points from the culminating points
and vice versa, and, since the daily rotation of the celestial sphere takes
place at a uniform pace around the axis of the equator, we can easily ad-
just for differences in time. By taking the inverse oblique ascension of
the result (i.e., in medieval terms, by finding the argument in the oblique
ascension table corresponding to the result), we can then simply find the
corresponding points of the ecliptic.

In the Horoscope of Iskandar Sultan we find four applications of the
technique sketched above.
1] Determination of the ascendant at the time of the nativity. We have 2v: 9–16

seen that the time of birth of Iskandar Sultan was observed as 4 equal
hours after sunset, i.e., shortly after 11 pm, on Sunday, 24 April 1384.
For this time ↪Imād al-munajjim Maḥmūd al-Kāshī finds the true solar
longitude as 1s12;38,45◦. If he now takes the oblique ascension of this
longitude, he obtains the point of the equator that will rise simultane-
ously with the Sun in little less than six hours. However, because the
time of the nativity is given with respect to sunset rather than sunrise,
he uses the following trick. He considers the point precisely opposite
the Sun, i.e., the point on the ecliptic with longitude 7s12;38,45◦ (in the
text this point is referred to as naẓīr). By means of the oblique ascension
he finds the equatorial point that rises simultaneously with the point op-
posite the Sun, namely 235;57◦. Since the point opposite the Sun rose
precisely four equal hours ago, at the same time when the Sun set, it
follows that the equatorial point that rises at the time of the nativity is
235;57◦ + 4 · 15◦ = 295;57◦. By taking the inverse oblique ascension
of this point, al-Kāshī finds the ascendant at the time of the nativity as
9s0;56◦, or 0;56◦ Capricorn.

Next he calculates the longitude of upper midheaven, in the text indi-
cated by ‘the tenth’ since it is the tenth of the twelve houses that divide
the ecliptic (see Section 15). As was mentioned above, the culminat-
ing point of the equator can be found in a straightforward way because
it is 90◦ removed from the rising point. Thus, at the time of the nativ-
ity, the culminating point of the equator was 295;57◦ − 90◦ = 205;57◦.
Since this point is the orthogonal projection of upper midheaven onto the
equator (note that the local meridian is perpendicular to the equator), it
follows that the longitude of upper midheaven is the inverse right ascen-
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sion of the culminating point of the equator and can thus be calculated as
6s27◦. Al-Kāshī abbreviates this calculation by using the normed right
ascension, i.e., the right ascension measured from Capricorn instead of
from Aries. This function simply adds 90◦ to the ‘ordinary’ right ascen-
sion of any ecliptic arc, so that it yields, for example, the oblique ascen-
sion of the ascendant as a function of the longitude of upper midheaven,
since the former is equal to the right ascension of the latter plus 90◦.
Thus the longitude of upper midheaven can be found from the oblique
ascension of the ascendant by taking the inverse normed right ascension.

2] Calculation of the ascendant from upper midheaven. According to2v: 21–4r: 1

a method of correcting the ascendant attributed to Ptolemy, the degree
of one of the cardines (disregarding its zodiacal sign) is equal to the
degree of the planet that rules over the place of the conjunction or op-
position of the Sun and the Moon preceding the nativity (for a more
extensive discussion of this criterion and the concept of rulership, see
1] in Section 14 below). Since three days before the birth of Iskandar a
Sun-Moon conjunction took place in 9;11◦ Taurus, whose ruler is Venus,
↪Imād al-munajjim Maḥmūd al-Kāshī calculates the longitude of Venus
at the time of the nativity and finds it to be 11s27;17,56◦ (see the com-
putational example on pp. 21–22). Since he had found upper midheaven
(the tenth house) at the preliminary time of the nativity as 6s27◦ (see 1]
above), with the same number of degrees as the longitude of Venus, he
concludes that the exact number of degrees of upper midheaven at the
corrected time of the nativity must have been equal to that of Venus, and
hence that its longitude was 6s27;17,56◦. Now the culminating point of
the equator can be found by taking the right ascension of this degree,
namely 205;19,9◦. The rising point of the equator is 90◦ removed from
the culminating point and is hence 295;19,9◦. Then the ascendant is
found as above by taking the inverse oblique ascension, the result now
being 0;26,49◦ Capricorn. The first two steps of this computation can
be abbreviated by using a table for the normed right ascension, as in the
previous example.48

48 The computation in the Horoscope cannot be precisely reconstructed. An accurate
calculation of the right ascension of upper midheaven yields 205;19,43◦, and the use of
al-Ṭūsī’s right ascension table with values to seconds leads to 205;19,47◦. Apparently
for this step of the calculation a table with right ascension values to minutes (which
would produce 205;19,6◦ if it were accurate) was used. An exact calculation of the
inverse oblique ascension of 295;19,9◦ leads to an ascendant of 0;27,5◦ Capricorn, and
the use of al-Ṭūsī’s oblique ascension table for latitude 44◦ to 0;27,9◦ Capricorn. Also
in this case the use of an oblique ascension table with values to minutes produces a result
closer to the text, namely, 0;26,54◦ Capricorn.
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3] Determination of the time when the ascendant has a given value. 4r: 2–26

The method for correcting the ascendant that is attributed to Hermes re-
quires that the ascendant at the time of the nativity is equal to the lu-
nar longitude at the time of conception, and the other way around (for
more details, see Section 14 below). In order to apply this criterion,
first the day of conception is determined by means of a rough estimate.
Then one needs to find the exact time on this day when the ascendant is
equal to the lunar longitude at the preliminary time of birth. Al-Kāshī
presents the intermediate steps of the calculation of this lunar longitude
(fol. 4r:9–14) and arrives at 2s21;18,43◦. He then calculates the solar
position at true midnight of the estimated day of conception, which he
finds as 3s27;24,45◦. Since the Sun reaches its point of lower culmina-
tion at true midnight, this is also the longitude of lower midheaven. By
the method explained under 2] above we can now quickly find the ascen-
dant at true midnight. However, since the ascendant itself is not needed
here, the text only uses its oblique ascension, 29;28,18◦. This we com-
pare with the oblique ascension of the desired ascendant (namely, the
lunar longitude at the preliminary time of birth), 56;4,16◦. The differ-
ence, 26;35,58◦ or 1;46,23,52 hours, is the time from midnight till the
moment when the ascendant is equal to the required lunar position (note
that the longitude of the ascendant increases as a function of time), and
hence also defines the exact time of conception. The method of Hermes
proceeds by determining the lunar longitude at the time of conception,
which then becomes the corrected ascendant at the time of the nativity.
4] Determination of upper midheaven from the ascendant. By the third 4r: 27–3v: 3

and last method for correcting the ascendant, which is associated with
Abū Ma↪shar, the ascendant is found as the average of the corrected
ascendants computed by the other two methods (see also Section 14
below). The procedure for finding upper midheaven from the ascendant
is that indicated under 1]: the oblique ascension of the ascendant is the
normed right ascension of upper midheaven.

14. Correction of the Ascendant

After a preliminary value for the ascendant at the time of the nativity 2v: 17–20

has been found (fol. 2v:15; see also 1] in Section 13 above), ↪Imād al-
munajjim Maḥmūd al-Kāshī proceeds to correct the ascendant by three
different canonical methods (namūdār, pl. namūdārāt, earlier Persian
spelling namūdhār, Latin animodar), all three associated with well-
known authors. The namūdār of Ptolemy is contained in his Tetrabiblos.
Together with the method attributed to Hermes, it is also found in the
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Thamara (‘Fruit’, in Greek: Karpos, in Latin: Centiloquium), a collec-
tion of one-hundred astrological aphorisms that was wrongly attributed
to Ptolemy and was often copied together with the Tetrabiblos.49 The
third namūdār used by the author of the Horoscope is associated with
Abū Ma↪shar. Namūdārs appeared in the works of Islamic astrologers
from early on.50 They were also described in Persian zījes from the thir-
teenth to fifteenth centuries, including the Īlkhānī Zīj by Naṣīr al-Dīn
al-Ṭūsī and the Khāqānī Zīj by Ghiyāth al-Dīn Jamshīd al-Kāshī. In ad-
dition, these sources present a namūdār associated with Zarathustra.51

1] Themethod of Ptolemy. The first namūdār is associatedwith Ptolemy2v: 21–4r: 1

himself and is found in the Tetrabiblos.52 It is also included in the
Thamara, in an extremely short form, as aphorism 34 (version with 100
aphorisms) or 36 (version with 102 aphorisms)53 and can be formulated
as follows: ‘At the exact time of birth, the degree of one of the cardines
(disregarding its zodiacal sign) is equal to the degree of the ruler over

49 The origin of the Thamara is unclear (cf. http://ptolemaeus.badw.de/work/190).
All extant Greek versions and Latin translations may ultimately derive from the Arabic.
Lemay, ‘Origin and Success’ suggested that the Thamara was created by Abū Jaʿfar Ibn
al-Dāya, the author of the popular commentary on the work that was also translated into
Latin multiple times (the Arabic version of this commentary was edited and translated
into Italian in Martorello & Bezza, Commento al Centiloquio). However, there is no
reliable evidence for this hypothesis and the contents of the 100 aphorisms rather points
to a Greek origin. See also Sezgin, Geschichte des Arabischen schrifttums, vol. VII,
pp. 42, 44–45 and 157, and Ullmann, Die Natur- und Geheimwissenschaften, pp. 283–
284. A widespread Persian commentary was written by Naṣīr al-Dīn al-Ṭūsī around
1260 (edited in Zanjānī, Šarḥ-e Samare) and was later translated into Arabic. The Greek
text was edited in Boer, Καρπός. Lemay died before he was able to publish his major
study on the Arabic and Latin versions of the Thamara. Boudet has continued the Latin
part of this work, summarised in Boudet, ‘The Medieval Latin Versions’. A full edition
and study of the most widespread Latin version, which was translated by Plato of Tivoli
in 1136, is currently being prepared by Emanuele Rovati.

50 See, for example, al-Qabīṣī (Burnett et al., Al-Qabīṣī (Alcabitius), pp. 108–111),
Kūshyār b. Labbān (Yano, Kūšyār Ibn Labbān’s Introduction, ch. III.3, pp. 161–167),
and al-Bīrūnī (Wright, The Book of Instruction, §§525–526, pp. 328–331).

51 For al-Kāshī’s extensive discussion of namūdārs in the Khāqānī Zīj, see Kennedy,
‘Treatise V’. For the namūdārs, a direct dependence of the author of Iskandar’s Horo-
scope on the Īlkhānī Zīj is less plausible, since the details of the descriptions of the
methods of Ptolemy and Hermes in Section 1 of Treatise 4 of the zīj are different from
those in the Horoscope, and al-Ṭūsī does not include the method of Abū Ma↪shar.

52 See Robbins, Tetrabiblos, ch. III.2, pp. 228–235, and the explanation in North,
Horoscopes and History, pp. 51–52.

53 See Martorello & Bezza, Commento al Centiloquio, pp. 114–117 (no. 34), and
Zanjānī, Šarḥ-e Samare, pp. 38–39 (no. 36). The Greek version in Boer, Καρπός, p. 44
(no. 34) deviates significantly from the Arabic and does not refer to a nativity.

http://ptolemaeus.badw.de/work/190
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the ecliptic degree of the conjunction or opposition of the Sun and the
Moon preceding the time of the nativity.’

Every degree of the ecliptic is assumed to be ruled, or dominated, by
a planet (in Arabic and Persian called mustawlī). In Islamic sources this
ruler is usually determined as the planet that has the largest sum of the
weighted ‘shares’ over the five essential astrological dignities, namely,
the domicile, exaltation, triplicity, term and decan.54

The Horoscope states (without providing a full calculation) that the
conjunction of the Sun and the Moon preceding the birth of Iskandar
was at 9;11◦ Taurus. Note that at the time of the nativity the Sun
was in 12;38,45◦ Taurus (fol. 2v:14) and the Moon in 21;18,43◦ Gem-
ini (fol. 4r:14). Thus the Moon had passed the Sun by approximately
38;40◦. Since the daily lunar mean motion in longitude (approximately
13;10,35◦) exceeds that of the Sun (0;59,8◦) by 12;11,27◦, it follows
that a conjunction of the Sun and the Moon must have occurred approx-
imately 38;40

12;11,27 ≈ 3 days before the time of the nativity. Thus this con-
junction would have taken place on 21 April 1384, at which time the Sun
was indeed in 9◦ Taurus. An accurate calculation of the time of the con-
junction should take into account that in particular the lunar equations
change significantly during a period of three days. Computing with al-
Ṭūsī’s parameters (although not, in this case, with the actual tables from
the Īlkhānī Zīj), I verified that at Uzgand the conjunction took place at
9:46 am on 21 April 1384 at a longitude of 9;11◦ Taurus, in complete
agreement with the value given in the Horoscope.55

The author of the Horoscope states without explanation that 9◦ Tau-
rus is ruled by Venus. Taurus is the domicile and the triplicity by day
of Venus, so that of all planets Venus indeed has the largest sum of the
‘shares’ over the five astrological dignities. Al-Kāshī then proceeds to
determine the longitude of Venus at the estimated time of the nativity
as 11s27;17,56◦. Since the position of upper midheaven had been es-
timated to be at 27◦ Libra (fol. 2v:16; see 1] in Section 13), its degree
in Libra is close to the degree of Venus in Pisces (disregarding the zo-
diacal sign), whereas the degree of the ascendant in Capricorn, 0;56◦,

54 The concept of rulership or domination and criteria for its determination are dis-
cussed, among others, in: Robbins, Tetrabiblos, I.20–22, pp. 90–111; Burnett et al., Al-
Qabīṣī (Alcabitius), pp. 58–61; Yano, Kūšyār Ibn Labbān’s Introduction, I.22, pp. 66–
69; Wright, The Book of Instruction, §§445–456, pp. 259–268, and Díaz-Fajardo, ‘The
Ptolemaic Concept’.

55 With modern tables or software, in particular the programAlcyone Ephemerides by
Rainer Lange and Noel Swerdlow, one finds that the conjunction took place at 10:04 am
local time at a longitude of 9;14◦ Taurus.
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is quite different.56 Hence the degree of upper midheaven is assumed
to be equal to that of Venus, so that we find the corrected position of
upper midheaven as 27;17,56◦ Libra. By a standard application of the
tables for oblique and right ascensions (see 2] in Section 13), al-Kāshī
then finds the ascendant as 0;26,49◦ Capricorn.

2] The Method of Hermes. The second namūdār is included in the4r: 2–26

Thamara as aphorism 51 (version with 100 aphorisms) or 53 (version
with 102 aphorisms)57: ‘The lunar longitude at the time of birth is equal
to the ascendant at the time of conception, and the lunar longitude at the
time of conception is equal to the ascendant at the time of birth.’

This method is applied by first approximating the time of conception
from the time of birth by a numerical procedure that is also found in zīj-
es.58 The mean time of gestation (in Arabic and Persian called makth,
i.e., ‘stay’ or ‘delay’) is taken to be equal to ten lunar cycles in lon-
gitude, i.e., since the daily lunar mean motion in longitude equals ap-
proximately 13;10,35◦, to 10 ·360◦

13;10,35 ≈ 273;12,58d ≈ 273d5h11m (text:
273d5h12m). The mean time of gestation is then corrected by the ‘equa-
tion of gestation’ (ta↪dīl-i makth), which is found as the number of days
that the Moon is removed from the ascendant at the time of birth un-
der the assumption that it moves at the rate of its mean longitude. If
the Moon is below the horizon, the equation of gestation must be added
to the mean gestation, otherwise it must be subtracted. In the case of
Iskandar’s birth, the lunar longitude was 2s21;18,43◦ and the prelimi-
nary ascendant 0;56◦ Capricorn. Thus the Moon was below the horizon
and 5s20;22◦ removed from the ascendant. The equation of gestation,
found as 5s20;22◦/13;10,35 ≈ 12;55,47d ≈ 12d22h19m, must therefore
be added to the mean gestation, yielding a total period of gestation of
286d3h30m (text: 286d2h).

56 Al-Qabīṣī states explicitly that one should choose the cardine whose degree in its
sign is closer to that of the ruling planet (Burnett et al., Al-Qabīṣī (Alcabitius), pp.110/1).
Note that this implies that, as the result of an application of Ptolemy’s namūdār, the
ascendant may change by as much as 29◦, and therewith the time of birth by up to
roughly two-and-a-half hours at the latitude of Uzgand.

57 See Boer, Καρπός, pp. 48–49 (no. 51); Martorello & Bezza, Commento al Cen-
tiloquio, pp. 144–147 (no. 51), and Zanjānī, Šarḥ-e Samare, pp. 48–49 (no. 53). Only
al-Ṭūsī’s commentary attributes this namūdār explicitly to Hermes.

58 See, for instance, Vernet, ‘Un tractat d’obstetrícia’; King, ‘A Hellenistic Astrolog-
ical Table’, esp. Section 7, pp. 699–701; Díaz-Fajardo, ‘Gestation Times’, and Chabás
& Goldstein, A Survey, pp. 223–227. The rationale behind the namūdār of Hermes is
discussed in Appendix D; see also Kennedy, ‘Treatise V’, pp. 140–143.
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Calculating back 286d4h from the time of birth, we find a first approx-
imation to the time of conception as 7 pm onMonday, July 13, 1383 (i.e.,
5 Ābān 752 Yazdigird). The text omits the following step, namely the
verification that the true lunar longitude at this time is in fact close to
the preliminary ascendant at the time of birth.59 It can be checked that,
according to the Īlkhānī Zīj, the lunar longitude reached the required
value in the early hours of 5 Ābān. The exact time of conception is then
found from the condition that the ascendant at the time of conception
is equal to the lunar longitude at the time of birth, 2s21;18,43◦. ↪Imād
al-munajjim Maḥmūd al-Kāshī first calculates the solar position at mid-
night of Ābān 4 as 3s27;24,45◦, from which he finds the oblique ascen-
sion of the ascendant at midnight as 29;18,18◦ (see 3] in Section 13).
Since the oblique ascension of the required ascendant at the time of con-
ception, 2s21;18,43◦, is 56;4,16◦, the conception must have occurred
(56;4,16◦ − 29;28,18◦)/15◦ = 1;46,23,52 hours after midnight. The
text of the Horoscope next gives the number of hours from noon up to
the ‘corrected time of conception’ as 13;35,10,52. The correction of
−0;11,13 hours that has taken place here is for the equation of time and
is in agreement with the table for that function found at the end of the
third treatise of the Īlkhānī Zīj.60 Finally, the lunar position at the cor-
rected time of conception is calculated and the result, 9s0;8,22◦, is taken
as the corrected ascendant at the time of birth.61

3] The Method of Abū Ma↪shar. A third namūdār, attributed to Abū 4r: 27–4v: 3

Ma↪shar, simply averages the results of the two previous methods. It is
the result of this method that is applied in the further calculations in the
Horoscope.62

59 In Appendix D it is shown that the exact time of conception may differ by more
than a day from the approximated time.

60 For manuscript references to this table, see footnote 30. For a brief explanation of
the equation of time, an overview of its uses in the Horoscope, and a discussion of the
mistake in its application that was made in the calculation of the true solar longitude at
midnight in the present context, see Appendix C.

61 Only in this calculation is the addition of 30 minutes to the mean lunar longitude, as
a correction to al-Ṭūsī’s original mean motion parameters, explicitly mentioned (cf. Sec-
tion 7.2 and footnote 28).

62 Ghiyāth al-Dīn Jamshīd al-Kāshī mentions the possibility to average the results
of the namūdārs of Ptolemy and Hermes, but does not associate this procedure with
any author (cf. Kennedy, ‘Treatise V’, p. 143). The zīj of Ibn Maḥfūẓ al-Baghdādī
associates the namūdār that averages the results of the namūdārs of Ptolemy andHermes
with Māshā↩allāh (Paris, Bibliothèque nationale de France, arabe 2486, fols 191v–192r;
see https://gallica.bnf.fr/ark:/12148/btv1b100374746/f195.item). I have not found any
sources besides the Horoscope of Iskandar that associate it with Abū Ma↪shar.

https://gallica.bnf.fr/ark:/12148/btv1b100374746/f195.item
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15. Calculation of the Astrological Houses

The four cardines defined in Section 13 are the basis for a division of4v: 4–29

the ecliptic in twelve so-called ‘houses’ (Arabic: bayt, pl. buyūt; Persian:
khāna), which are numbered in the order of increasing longitude. The
ascendant is the first house, lower midheaven the fourth, the descendant
the seventh, and upper midheaven the tenth. The intermediate ‘cusps’
(marākiz, lit. ‘centres’, the beginnings of the houses) can be defined in
a number of different ways of varying mathematical complexity. The
calculation of the houses is referred to in Arabic and Persian as taswiya
al-buyūt, the ‘equalisation of the houses’.

In the Horoscope of Iskandar, the explanation of two common meth-
ods for the equalisation of the houses is announced. However, due to one
or more missing folios in the manuscript, the end of the first method and
the whole second method are missing from the text. The first method to
be expounded is called the ‘famous method’; it is the standard method
included in most Islamic sources and will be explained below. The sec-
ond method is called ‘verified cusps’ (marākiz-i muḥaqqaqa) in the text4v: 6

of the Horoscope and is referred to as ‘prime vertical method’ in the
modern literature. This method divides the four quadrants of the prime
vertical (the great circle passing through the zenith and the east and west
points of the horizon, in the Horoscope called dā↩ira-yi awwal-i sumūt,
‘circle of initial azimuth’) in three equal parts; the houses are then found
as the points of intersection of the great circles through the trisection
points on the prime vertical and the northern and southern points of the
horizon with the ecliptic.63

The Standard Method

The standard method for determining the twelve houses can be de-
scribed as follows. Assume that the ascendant and descendant, as well as
upper and lower midheaven have been found as explained in Section 13
(cf. Figure 10). By definition, the ascendant is the beginning of the first
house, lower midheaven of the fourth, the descendant of the seventh,

63 This method is further discussed in North, Horoscopes and History, pp. 30–40,
and Kennedy, ‘The Astrological Houses’, pp. 541–543. Also the two extant versions
of the Horoscope for Iskandar’s half-brother Rustam (see footnote 23) contain general
descriptions of the standard method and the prime vertical method with calculations ac-
cording to both. For further Islamic methods of calculating the houses, see, for example,
Kennedy, ‘Ibn Muʿādh’; Hogendijk, ‘Applied Mathematics’; Casulleras, ‘Mathemati-
cal Astrology’; Casulleras, ‘Métodos para determinar’, and Casulleras & Hogendijk,
‘Progressions, Rays and Houses’.
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Figure 12: Equalisation of the houses according to the ‘Standard Method’

and upper midheaven of the tenth. Project the four cardines orthogo-
nally (i.e., from the equatorial pole) onto the equator. Divide each of the
resulting four arcs into three equal parts and project these back onto the
ecliptic from the equatorial pole. The resulting twelve segments of the
ecliptic are the twelve houses.

In the text of the Horoscope, the equalisation of the houses by the 4v: 5–14

standard method is formulated in a slightly different way, illustrated by
a defective diagram on fol. 4v, here reproduced in Figure 13 on p. 55.
Figure 12 shows my own diagram for the actual situation at the time
of Iskandar’s birth, with points on the sphere represented by the same
letter symbols as in the Horoscope; some obvious differences from the
diagram in the manuscript will be discussed below. The circle ABGD
represents the local meridian at the time of the nativity, AEG the eastern
half of the horizon, BED the eastern half of the equator, and RHT the
eastern half of the ecliptic. Thus point R is upper midheaven, H the
ascendant, and T lower midheaven. Now the half-circle KHL, drawn
parallel to the equator, is the path that the ascendant traces on the celestial
sphere during the day of Iskandar’s birth (note thatKHL is generally not a
great circle). KH, the half arc of daylight associated with the ascendant,
is divided into three equal parts KM, MN, and NH, and similarly HL,
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the half arc of nighttime, is divided into three equal parts HS, SO and
OL.64 The points K,M,N,H, S,O, and L are projected onto the equator
and the ecliptic by intersecting ‘declination circles’ (dawā↩ir-i mayl)65
through these points with the equator and the ecliptic. The resulting
points on the equator areB,Θ,F, Z,X,U, andD, and those on the ecliptic
are R,C, J,H, Σ, I, and T.

The part of the text that states that C is the beginning of the eleventh
house, J of the twelfth, Σ of the second, and I of the third, is missing from
the manuscript. The same holds for the actual calculation of the longi-
tudes of these cusps, which can be performed as follows. The arcs BΘ,
ΘF andFZ on the equator are equal, and each correspond to two seasonal
day-hours associated with the ascendant. Similarly, the arcs ZX, XU and
UD each correspond to two seasonal night-hours (note that a day-hour
and a night-hour add up to two equal hours). Furthermore, the given4v: 14–15

seven points on the equator are the endpoints of the ascensional arcs of
the corresponding points on the ecliptic. This implies that the houses can
be found as the inverse right ascensions of the seven points on the equa-
tor. In Section 14 we have found the ascendant according to the method
of AbūMa↪shar as 0;17,35◦ Capricorn, the tenth house as 27;6,24◦ Libra,
and the right ascension of the latter as 205;8,47◦ (measured from Aries).
Since the right ascension of the ascendant is 270;19,10◦, the half arc of
daylight BZ or KH equals 270;19,10− 205;8,47 = 65;10,23◦. Dividing
this into three equal parts of 21;43,28◦, we find the right ascension of the
eleventh house as 226;52,15◦ and that of the twelfth house as 248;35,42◦.
By taking inverse right ascensions, we find that the eleventh house is in
19;20,9◦ Scorpio and the twelfth house in 10;13,39◦ Sagittarius. Since
the half arc of daylight and the half arc of nighttime add up to 180◦, it
follows that ZD equals 114;49,37◦. Thus the right ascensions of the sec-
ond and third houses become 308;35,42◦ and 346;52,15◦ respectively,
and their ecliptic longitudes 6;12,8◦ Aquarius and 15;43,48◦ Pisces. The
remaining houses follow immediately, since the descendant is 180◦ re-
moved from the ascendant and hence the equatorial arc between B and

64 The arc of daylight associated with an arbitrary point on the celestial sphere is
defined as the part of the daily path of that point that lies above the horizon. Similarly,
the arc of nighttime is the part of the daily path of a given point that lies below the
horizon. Only for the Sun, these definitions correspond to the actual day and night. See
further Section 18.

65 The term dā↩ira-yi mayl, here translated as ‘declination circle’, stands for a great
circle through the equatorial poles, along which the declination (i.e., the distance from
the equator) can be measured. Note that the modern term ‘circle of declination’ is also
used for circles with a constant declination, which are parallel (rather than perpendicular)
to the equator.
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Figure 13: The calculation of the astrological houses as depicted in the manuscript of
the Horoscope of Iskandar Sultan (London, Wellcome Library, Persian 474, fol. 4v).

the projection of the descendant onto the equator equals 180◦ minus arc
BZ. As a result, the eleventh to third houses are precisely opposite the
fifth to ninth houses. The longitudes found in this way are in agreement
with the values to minutes given in the table on fol. 16v of the Horoscope
of Iskandar Sultan. They are here reproduced in Appendix F.

The section on the equalisation of the houses mentions some proper-
ties that are not directly needed in the calculation of the houses. For in-
stance, it is stated that arc EZ is the equation of daylight associated with 4v: 15–16

the ascendant, i.e., the difference between the half arc of daylight and
90◦. E is the endpoint of the oblique ascension of the ascendant H, and
Z the endpoint of its right ascension (said to be measured from Capricorn
rather than fromAries). In the case of Iskandar’s birth, the ascendant lies 4v: 18–23

south of the equator (and hence is not visible from the equatorial north
pole) and the equation of daylight EZ must be subtracted from 90◦ in
order to obtain the half arc of daylight. If the ascendant lies north of the
equator, EZ must be added to 90◦ to obtain the half arc of daylight. It is
not clear to me why, on lines 21 and 22, both in the case of a subtrac-
tion and in the case of an addition the half arc of daylight is indicated by
‘excess’ (tafāḍul). The last sentence on the page, which is not complete, 4v: 28–29

appears to indicate that the oblique ascension of the ascendant, which is
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Figure 14: Equalisation of the houses as intended by the author of the Horoscope

measured from Aries, is 90◦ more than the right ascension of the tenth
house measured from Capricorn (cf. Section 13). This right ascension
was calculated on fol. 4v:3.

As far as the diagram on fol. 4v of the manuscript is concerned, it
seems that some parts of the half-circles representing the equator, ecliptic
and daily path were mixed up. We can note the following (cf. Figure 13):
● Points B and Θ of the equator lie above the ecliptic, the other points
below.

● Of the points K, M, N, H, Σ, I and T, which, in the diagram, lie on
a half-circle presumably supposed to represent the daily path of the
ascendant, the first three in fact belong to the daily path, but the last
three are points on the ecliptic and should lie above the daily path.
The ascendant H lies both on the ecliptic and on the daily path.

● The points S,O and L, which lie on part of an arc between the ecliptic
and the equator, belong to the daily path of the ascendant.

A reconstruction of the diagram that could have been intended by the au-
thor of the Horoscope is shown in Figure 14. Note that it preserves the
relative positions of all letters indicated in the original diagram and that
it restores the ecliptic and the daily circle by a minimal number of adjust-
ments; only the depiction of the equator in the original diagram was ba-
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sically correct. However, the reconstructed diagram is not in agreement
with the text of the Horoscope to the extent that the ascendantH now lies
above the equator instead of below and that the vernal equinoctial point
lies between the ascendant and upper midheaven rather than between the
ascendant and lower midheaven. This could only partially be remedied
by assuming that Q stands for the southern instead of the northern pole,
since in that case Rwould be the fourth house and T the tenth rather than
the other way around. In any case, the diagram in the manuscript seems
to be irreconcilable with the phrase in the text ‘if the degree of the as-
cendant is hidden from the pole, as I depicted it on the diagram and as it
happened in the case of the blessed ascendant, ...’ (fol. 4v:20–21).

16. Distance of the Planets from the Equator

Now that the planetary longitudes and latitudes and the twelve astro-
logical houses have been determined, ↪Imād al-munajjim Maḥmūd al-
Kāshī proceeds tomake preparations for the calculation of further impor-
tant indicators for the life of the native, namely planetary rays (explained
in Section 21) and prorogations (cf. Appendix E). The following five
sections in the Horoscope determine step by step the various spherical-
astronomical quantities that are needed for this purpose. A central po-
sition in this process is occupied by the ‘incidental horizon’, also called
‘position semicircle’, the half-plane through the north and south points
of the local horizon and the given heavenly body (for details, see Sec-
tion 19). Various astrological quantities (besides the planetary rays and
the prorogations also the astrological houses) are determined by divid-
ing arcs on a great circle in equal parts or by setting off arcs of equal
length on a great circle. There are several possibilities for choosing these
great circles: besides the basic ones, i.e., the equator, the ecliptic and
the horizon, other, more complicated possibilities are the prime vertical,
seasonal hour lines, and the incidental horizon.66 Al-Kāshī starts by ex-
plaining the calculation of basic concepts such as the distance from the
equator of heavenly bodies not positioned on the ecliptic and the equa-
tion of daylight. After having given full details of the calculation of the
incidental horizon, he introduces the ‘corrected ascension’ (Section 20),
by means of which the planetary rays can be easily cast.

The distance of a heavenly body from the equator (i.e., in modern 3r: 14–16

terms, its declination) is defined as the arc between the body and the
equator on the declination circle passing through the body. As we have

66 For a classification of such methods, see Casulleras & Hogendijk, ‘Progressions,
Rays and Houses’ and the further literature mentioned in Section 21 and Appendix E.
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seen above (cf. footnote 65), declination circles (dawā↩ir-i mayl) are
great circles through the equatorial poles perpendicular to the equator,
as opposed to the modern ‘circles of (constant) declination’, which are
parallel to the equator and are small circles except when the declination is
zero. In the text the word mayl (‘declination’) is only used for heavenly
bodies on the ecliptic, in particular for the Sun (fols 3r:17, 7r:14) and
the lot of fortune (fol. 7v:26; see Section 22). For bodies north or south
of the ecliptic the term bu↪d ↪az dā↩ira-yi mu↪addil al-nahār (‘distance
from the equator’) is used exclusively.

As we have already seen in Section 5, the declination of the Sun
can be calculated from its longitude by means of the formula sin δ =
sin ε · sin λ, where λ denotes the solar longitude, ε the obliquity of the
ecliptic, and δ the solar declination. This formula follows from an ap-
plication of the sine rule to triangleQS in Figure 15, in which is the
vernal equinoctial point, Q the position of the Sun, and S the orthogonal
projection of Q onto the equator. The values given in the text for the3r: 17–19

sine of the declination and the declination itself leave no doubt that the
obliquity used is 23;30◦, the value consistently applied by al-Ṭūsī in the
Īlkhānī Zīj and found in only very few other Islamic sources.

For an arbitrary heavenly body P not on the ecliptic, let Q be its or-
thogonal projection onto the ecliptic, R the point on the equator whose
orthogonal projection onto the ecliptic isQ, and S the orthogonal projec-
tion of Q onto the equator (see Figure 15). Finally, let T be the orthog-
onal projection of P onto the equator. Arc Q is the longitude λ of the
heavenly body and arc QP its latitude β. The arc QS is the (first) dec-
lination δ of point Q, and arc QR is its second declination δ2. The first
declination can be calculated directly from the longitude λ according to
the formula for the solar declination given above, while the second dec-
lination is found from tan δ2 = sin λ · tan ε by means of an application
of the ‘double-tangent rule’ to triangleQR.67

67 Another method for calculating the second declination that frequently occurs in
medieval sources is expressed by the modern formula sin δ2 = sin δ(λ)/ cos δ(90◦−λ),
which can be proved by the following application of the Rule of Four. Let X be the point
on the ecliptic 90◦ removed from Q on the other side of the nearest equinox, and let Y
be the orthogonal projection of X onto the equator. Let Z be the intersection of the
declination circle through X and Y and the ‘latitude circle’ (i.e., the circle perpendicular
to the ecliptic) through R and Q. Since X is a pole of this latitude circle, we have
XZ = 90◦ and hence YZ = XZ − XY = 90◦ − δ(90◦ − λ). The formula given above
now follows from the Rule of Four applied to the triangles△RQS and△RZY. The proof
is given, for example, in al-Zīj al-Jāmi↪ of Kūshyār ibn Labbān; see Bagheri, az-Zīj al-
Jāmi↪, pp. 50 and 168–169 (English translation), p. 60 (commentary) and Arabic pp. 32
and 121–122.
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Figure 15: Calculation of the distance from the equator

The text of the Horoscope does not state in every detail how the dis-
tance from the equator d = PT of the given heavenly body is calculated.
In the six practical calculations for the Moon and the five planets, the
following intermediate results are presented in each case: cos β, cos δ2,
and sinPR. In the text, ad = PR is called the ‘argument of the distance’
(ḥiṣṣa-yi bu↪d); it is the sum of the absolute values of the latitude PQ
and the second declination QR if P and R lie on different sides of the
ecliptic, and their difference if P and R lie on the same side. As the last
step in the calculation for each case sin d is found as a quotient, but it
is not clear of which terms. Only for the Moon the ‘sine of the distance
from the equinox’ (this distance is presumably Δ = P) is mentioned,
but its value has not been inserted.

Most probably, the author of the Horoscope found the distance from
the equator by a method equivalent to the following formula, which is
also found in other medieval sources:68

sin d = sin ad ·
cos ε
cos δ2

.

This relation can be derived by noting that △TRP and △RUV (where
U is the orthogonal projection of the solstitial point onto the equator,

68 See, for example, Section II.5 in the Zīj of Ulugh Beg (Sédillot, Prolégomènes
publiés, pp. 348–349, for the Persian text and Sédillot, Prolégomènes traduction, pp. 89–
91, for a French translation).
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which is 90 equatorial degrees removed from, and V is the pole of the
ecliptic) are similar because they have the acute angle at R and a right
angle in common. It follows from the Rule of Four that

sin d = sinPT = sinPR · sinUV
sinVR

= sin ad ·
sin(90◦ − ε)
sin(90◦ + δ2)

= sin ad ·
cos ε
cos δ2

.

In this way cos β and the distance from the equinox Δ are not used
(note that cos β is one of the terms from which Δ is calculated, since
we have cos Δ = cos λ · cos β by the special case of the cosine rule,
the ‘Pythagorean formula for a spherical triangle’, in triangle QP).
Another straightforward method to calculate d is to first determine the
angle at R in△QR by means of the sine law:

sin ̸ QR= sin λ · sin ε
sin δ2

,

and then to apply the sine law to△PRT to find

sin d = sin ̸ QR · sin ad =
sin λ · sin ε · sin ad

sin δ2
.

Alternatively, the Rule of Four may be applied to the pair of triangles
△QRS and △PRT to find sin d = sin δ · sin ad/ sin δ2. However, none
of these methods gives a better correspondence to the intermediate re-
sults indicated in the text than the first method given above. A simple
explanation for the inclusion of the values for cos β and cos Δ in the cal-
culations of the distance from the equator may be that they were going to
be used in the determination of the ascension of transit in the following
section of the Horoscope.

Notes to the calculations in the text. The given values of the second declina-3r: 17–3v: 5

tion all confirm the use of al-Ṭūsī’s obliquity value 23;30◦. For the Moon, the
quotient should be 0;19,0,58 instead of 0;19,4,58 (scribal mistake?). For Mer-
cury, the argument of the distance is the sum of the second declination and the
latitude (since the planet is north of the ecliptic and point R is south of it), i.e.,
21;47,49◦. The sine of this arc is 0;22,16,44, but the remainder of the calcula-
tion was performed with the value 0;22,10,44, apparently a scribal mistake.

A problematic case is Jupiter, for which three different declination values
appear in theHoroscope. In the present calculation the arcsine of 20;27,6 should
be 19;55,45◦ rather than the text’s 19;15,45◦ (scribal error). In determining the
ascension of transit (see Section 17) the complement of Jupiter’s declination is
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Figure 16: Calculation of the ascension of transit

given as 70;44,15◦, which is in agreement with the erroneous value. Further-
more, the same erroneous value is repeated in the calculation of the latitude
of the incidental horizon (see Section 19). However, from the calculation of
the ascension of rising (see Section 18) the tangent of Jupiter’s declination can
be reconstructed as 19;47,58, which is the tangent of 18;15,45◦, apparently an
additional misreading of the above incorrect value 19;15,45. The same tangent
value is used in Section 20 for finding the corrected ascension.

17. Ascension of Transit

A transit (mamarr) is defined as the crossing of any declination cir- 3v: 6–10

cle (dā↩ira-yi mayl, i.e., a great circle through the poles of the equator,
cf. footnote 65) by a given heavenly body. Thus, a transit in medieval
astronomy is a more general concept than its modern meaning of the
crossing of the local meridian (i.e., culmination). Let P be the heavenly
body and T its orthogonal projection onto the equator (cf. Figure 16).
Then the ascension of transit (maṭāli↪ al-mamarr) αt is the equatorial
arc between the vernal equinox  and T (measured in the direction of
the zodiacal signs). The longitude of the point of intersection X of the
declination circle PXT with the ecliptic is called the degree of transit
(daraja-yi mamarr) and is measured by the arc dt = X.

The ascension of transit of a given heavenly body P can be calcu-
lated by considering the two right-angled triangles △PQ and △PT
in Figure 16. Of the first triangle, only the side Δ = P, the distance of
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the heavenly body from the vernal equinoctial point, is unknown, and it
can be found by the Pythagorean formula for spherical triangles as

cos Δ = cosQ · cosPQ = cos λ · cos β.

In the second triangle we similarly have cos Δ = cosT ·cosPT, so that
we find

cos αt = cosT =
cos Δ
cosPT

= cos λ · cos β
cos d

.

The calculations in the Horoscope proceed exactly by this method, ex-
cept that the cosines are expressed in the text as the sines of the comple-
mentary arcs on the sphere.69

Once the ascension of transit is known, the degree of transit dt can
simply be found by an inverse lookup in a right ascension table, since
any point on the declination circle through the heavenly body rises si-
multaneously with the heavenly body and T at sphaera recta (note that
the declination circle is perpendicular to the celestial equator).
Notes to the calculations in the text. For all planets, nuqṭa (lit. ‘point’) stands for3v: 10–6r: 11

U, the projection of the solstitial point nearest to the heavenly body concerned
onto the equator (thus U is 90 equatorial degrees removed from the vernal
equinoctial point). Since it is not clear how this is implied by the general term
nuqṭa, it may bemore appropriate to adopt the translation ‘point [of ascension of
the nearest solstice]’ from the expression used in this context in the Horoscope
of Rustam (cf. footnote 23 on p. 21).

The calculations for the Moon and the five planets are basically correct.
Only for Venus, the quotient should be 0;59,57,1,57 rather than 0;59,57,55
(scribal or computational error?), but the following arcsine was undoubtedly
calculated from the value given in the text. The degrees of transit were omitted
for each planet. If calculated from the given ascensions of transit by means
of al-Ṭūsī’s obliquity value 23;30◦, they become: Moon 2s 21;36,48◦; Saturn
2s 15;36,13◦; Jupiter 2s 2;45,10◦; Mars 7s 1;39,50◦; Venus 11s 27;52,30◦; Mer-
cury 2s 0;3,38◦.

18. Equation of Daylight and Ascensions of Rising and Setting

The ascension of rising and the ascension of setting of a given heav-6r: 12–21

enly body, as well as its equation of daylight, half arc of daylight, and arc
of daylight are defined on fol. 6r. In Figure 17, let us consider the daily
path across the celestial sphere of the heavenly body P. As noted before,

69 See also Section II.11 in the Zīj of Ulugh Beg (Sédillot, Prolégomènes publiés,
pp. 359–360, for the Persian text and Sédillot, Prolégomènes traduction, pp. 103–104,
for a French translation).
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Figure 17: Calculation of the equation of daylight and the ascensions of rising and setting

this path is a small circle parallel to the equator, namely NHPMD, where
H is the eastern intersection of the daily path with the horizon and D the
western intersection. The ‘arc of daylight’ (qaws al-nahār) associated
with the heavenly body is the part of the daily path that lies above the
horizon (HMD), and the ‘arc of nighttime’ (qaws al-layl) is the part that
lies below the horizon (DNH). Only in the case of the Sun do the arcs
of daylight and nighttime correspond to the actual day and night. In all
other cases they measure the time that the heavenly body concerned is
above or below the horizon during the given day.

In order to calculate the arcs of daylight and of nighttime, we project
the daily path of the heavenly body orthogonally onto the equator. H is
the rising point of the daily path on the eastern horizon, D the setting
point on the western horizon, M the point of upper culmination, and N
the point of lower culmination. Then letH ′ be the orthogonal projection
onto the equator of H, and M ′ the orthogonal projection of M. Let E be
the east point of the horizon, i.e., the eastern intersection of the horizon
and the equator, and  the vernal equinoctial point. Note that M ′ is the
culminating point of the equator, so that EM ′ = 90◦.

Now the half arc of daylight (niṣf-i qaws al-nahār) is equal to the arc
M ′H ′ on the equator, and the equation of daylight (ta↪dīl al-nahār) is the
difference η = EH ′ of the half arc of daylight from EM ′, i.e., from 90◦.
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The equation of daylight can be calculated from the right-angled triangle
△EHH ′ by using the ‘double-tangent rule’:

sin η = sinEH ′ = tanHH ′/ tan ̸ H ′EH = tan d · tan φ.

Here d is the distance of the heavenly body from the equator calculated
in Section 16, and φ the geographical latitude. In order to obtain the half
arc of daylight, the equation of daylight must be added to EM ′ = 90◦ if
the heavenly body is located to the north of the equator, and subtracted
from 90◦ if it is to the south. The arc of daylight is twice the half arc of
daylight.

The author of the Horoscope proceeds to calculate the degrees of
rising and setting of each heavenly body, i.e., the degrees of the ecliptic
that set and rise simultaneously with the body under the assumption that
the body rises or sets at the time of the nativity. For this purpose, he
introduces imaginary horizons that pass through the heavenly body but
have the same latitude as the place of birth.70 Alternatively, one may
rotate the whole celestial sphere around the axis perpendicular to the
equator until the heavenly body lies in the plane of the horizon; thus the
heavenly bodyPwill havemoved to its rising point or its setting point. In
Figure 17, Pr = H denotes the position of the heavenly body P under the
assumption that it rises at the time of the nativity, and Ps = D its position
under the assumption that it sets at the time of the nativity. r ands are
the respective corresponding positions of the vernal equinox; in each of
the hypothesized situations the ecliptic longitude of the heavenly body
(λP, λr and λs in the figure) is supposed to be the same. The calculations
are then carried out as follows:

The (oblique) ascension of the rising point H = Pr of the heavenly
body, i.e., the equatorial arc between the vernal equinox r and the
Eastern point E, is found as the difference of the ascension of transit
rH ′ and the equation of daylight EH ′ if the body is situated north of
the equator, and as the sum of these two quantities if the body is south of
the equator. Because of the symmetry of the celestial sphere with respect
to the local meridian, the (oblique) ascension of the setting pointD = Ps
of the heavenly body, i.e., the equatorial arc between the vernal equinox
s and the Western point of the horizon W, is found as the sum of the
ascension of transit sD ′ and the equation of daylight D ′W if the body

70 Note the difference between these horizons and the incidental horizons discussed
in Section 19 below. The latter pass through the given heavenly body as well as through
the north and south points of the horizon, so that their latitudes are different from that of
the local horizon except if the heavenly body is situated in the eastern half of the plane
of the horizon.
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is north of the equator and as the difference of these two quantities if it is
south. However, the quantity that is usually called ‘ascension of setting’
(maṭāli↪-i ghurūb) in Islamic sources issW plus or minus 180◦. When
using this definition, the ascension of setting can also be found by adding
the arc of daylight to the ascension of the rising point.71

Different from the Horoscope of Rustam, the one for Iskandar does
not actually give the degrees of rising and setting of the Moon and the
five planets. The degree of rising, i.e., the longitude λr of the point on
the ecliptic that rises simultaneously with the body under the assumption
that it rises at the time of the nativity, is the degree whose oblique ascen-
sion is equal to the ascension of rising. The degree of setting λs cannot be
found directly from the oblique ascension table with the ascension of the
setting pointsW, since we are here dealing with a setting phenomenon.
We thus need to add 180◦ to sW, thereby obtaining the ‘ascension of
setting’, find the arc whose oblique ascension is equal to the value found,
and then add 180◦ again to obtain λs. For example, the ascension of
transit of the Moon is 80;52,2◦, and its equation of daylight 18;49,34◦.
Since the Moon is north of the equator, the ascension of the setting point
is found as 80;52,2◦ + 18;49,34◦ = 99;41,36◦. The ascension of set-
ting is equal to this value plus 180◦, i.e., it is 279;41,36◦, which is the
oblique ascension of 256;49,47◦. Thus we find the degree of setting
as 256;49,47 − 180◦ = 76;49,47. Note that for heavenly bodies on the
ecliptic the degrees of rising and of setting are equal to the ecliptic longi-
tude (and, consequently, for bodies near the ecliptic the degrees of rising
and of setting and the ecliptic longitude will be very close to each other).
Notes to the calculations in the text. The calculation of the equation of day- 6r: 22–6v: 8

light of the Moon and the five planets is one of only two types of computations
in which the division by 60 (‘lowering’, cf. Section 5), needed due to the use
of trigonometric functions with a base radius of 60, is explicitly mentioned.
For the Moon, the ascension of the rising point should be 62;2,38◦ instead of
62;2,28◦. For Saturn, the given ascension of the rising point is one degree
too high; this could have resulted from misreading the ascension of transit as
75;21,46◦ or from a computational mistake. For Jupiter, the product of the
tangent of the distance from the equator and the tangent of the latitude should
have been close to 0;21,0,28; it was apparently calculated for a misread value
of the distance from the equator, 18;15,45◦ (instead of 19;55,45◦, in the text:
19;15,45◦; cf. Section 16, p. 60). The ascension of the rising point for Mars
is based on the incorrect value 19;29,31◦ given earlier in the text; the correct

71 cf. Section II.12 in the Zīj of Ulugh Beg (Sédillot, Prolégomènes publiés, pp. 361–
362, for the Persian text and Sédillot, Prolégomènes traduction, pp. 105–106, for a
French translation).
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value is 209;29,31 + 11;13 = 220;42,31◦. For Mercury, the product of the
two tangents should have been near 0;22,31,46, but apparently the equation of
daylight was calculated by taking the arcsine of a number close to 0;22,32,46.
In each of the six cases the space for the ascension of setting is left blank. Ac-
cording to my calculations, the missing values should be as follows: Moon
279;41,36◦, Saturn 276;47,42◦, Jupiter 259;15,58◦ (from the incorrect equa-
tion of daylight; correct: 261;2,55◦), Mars 18;16,31◦, Venus 176;40,49◦, and
Mercury 259;56,31◦.

Note that the products of the tangents of the distance from the equator and
the geographical latitude are given to four sexagesimal digits for Saturn, Mars
and Venus. In each case it can be verified that the multiplicands must have had
precisely three digits. In particular, the value that was used for the tangent of
the latitude of Uzgand, 44◦, was 0;57,56,29 (exact value: 0;57,56,28,46,31,...).

19. Incidental Horizon

The incidental horizon (ufuq-i ḥādith) of a given heavenly body is6v: 9–14

defined in the Horoscope as the great circle passing through that body
and the north and south points of the local horizon (see the shaded half-
plane in Figure 18, in which R is the heavenly body, A the south point
and G the north point of the local horizon). As explained on p. 57,
↪Imād al-munajjim Maḥmūd al-Kāshī uses the incidental horizon as the
reference plane for calculating the planetary aspects (see Section 21) and
presumably also for finding prorogations (cf. Appendix E). He calculates
the latitude of the incidental horizon for the Sun, the Moon, the five
planets, and the lot of fortune.

Similarly to the local horizon, the latitude of the incidental horizon is
defined as the arc (taken to be smaller than 90◦) between the incidental
horizon and one of the equatorial poles, measured perpendicularly to the
incidental horizon, i.e., along the great circle KN ′ML through the poles
of the equator and the poles of the incidental horizon. Thus, in Figure 18,
the latitude of the incidental horizon is the arc φi = ML.

If the heavenly body happens to be rising or setting, the local horizon
and the incidental horizon lie in the same plane. If the heavenly body
happens to be in upper or lower culmination (i.e., if it crosses the local
meridian), its incidental horizon coincides with the local meridian and
has zero latitude. If the planet or star is in the eastern half of the celestial
sphere, the orientation of the incidental horizon is taken to be the same as
that of the local horizon; if the planet or star is in the western half of the
celestial sphere, the orientation of the incidental horizon is taken to be
opposite to that of the local horizon (i.e., for an observer in the northern
hemisphere, it is assumed to be ‘negative’ or southerly).
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Figure 18: Calculation of the incidental horizon and the incidental equation of daylight

The method of calculating the latitude of the incidental horizon is 6v: 15–7r: 13

shown step by step in the Horoscope. In the diagram provided for this
purpose on folio 6v in the manuscript (see Figure 19), the view is onto
the horizon from the nadir of the locality of nativity, and most arcs and
points shown lie below the horizon (note that the proof is intended to
be for the Sun, which was indeed below the horizon at the time of the
nativity). In my own Figure 18, the view is onto the local meridian
from the west, showing the heavenly body R between its setting and its
lower culmination. The letters from the diagram in the text have been
maintained in all cases in order to facilitate a comparison of the two
figures.

The calculation proceeds as follows: Let ABGD be the local horizon,
with A the north point, B east, G south, and D west. Let DTB be the
equator, with T its point of lower culmination, and let K and L be the
equatorial north and south poles. Then AELGK, with E the nadir of
the geographical locality for which the calculations are made, is the
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Figure 19: The calculation of the incidental horizon and the incidental equation of
daylight as depicted in the manuscript of the Horoscope of Iskandar Sultan (London,
Wellcome Library, Persian 474, fol. 6v).

local meridian, and BED is the prime vertical (in the Horoscope called
‘circle of initial azimuth’, dā↩ira-yi awwal-i sumūt). Let R be the given
heavenly body (in the text assumed to be the Sun) and N ′ the pole of its
incidental horizon ARG (in text and diagram in the Horoscope reference
is made to the opposite pole N). Finally, let M be the intersection of
the great circle KN ′L through the poles of the equator and the incidental
horizon with the incidental horizon. Then the latitude of the incidental
horizon is φi = arcLM, measured alongKN ′L. Now φi can be calculated
in the following five steps.
1] Let KRL be the declination circle of the heavenly body R, which
crosses the equator orthogonally in H. Then d = RH is the distance of
the heavenly body from the equator (cf. Section 16). Let DRB be the
great circle passing through the heavenly body and the west and east
points of the horizon; this great circle intersects the meridian perpendic-
ularly in Y. Now the two right-angled triangles KHT and KRY have the
acute angle at K in common. It therefore follows from the Rule of Four
that sinHT

sinHK
=

sinRY
sinRK

.
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If we denote HT (the distance in right ascension between the heavenly
body and lower midheaven or the fourth house72) by δ4 and RY (the
distance of the heavenly body from the meridian) by δm, we thus find
sin δm = sin δ4 · cos d.73 Since δ4 can be calculated as the difference of
the ascension of transit αt and the right ascension of lower midheaven
α4, which are both known, we can now determine δm, and therewith its
complementDR = 90◦−δm, the distance of the heavenly body from the
west point D.
2] Now the two right-angled triangles△DRH and△DYT have the acute
angle at D in common. Thus we find from the Rule of Four that

sinTY
sinHR

=
sinYD
sinRD

,

so that the so-called ‘first arc’ q1
def
= TY can be obtained from sin q1 =

sin d/ cos δm.
3] Since φ = ET is the latitude of the locality of nativity, the ‘second
arc’ q2 = EY can simply be found by adding the latitude to the first arc:
q2 = q1 + φ.74

4] Now let S be the point of intersection of the incidental horizon with
the prime vertical, so that RS is the distance of the heavenly body from
the prime vertical. The two right-angled triangles △DRS and △DEY
have the acute angle ̸ RDS = ̸ YDE in common. Thus we find from the
Rule of Four that

sinRS
sinYE

=
sinRD
sinED

or
sinRS
sin q2

= cos δm,

from which the ‘third angle’ q3 = GR = 90◦+RS follows immediately.
5] Finally note that the triangles △GRY and △ALM both have a right
angle (respectively at Y andM), and also have an acute angle in common,
since the respective angles at G and A are equal to the angle between the

72 If the heavenly body is situated above the plane of the local horizon, the distance in
right ascension between the body and upper midheaven (the tenth house) will be taken
here. As in most other calculations, such alternative cases are left to the reader.

73 This step is one of only two places in the Horoscope in which the division by 60
(‘lowering’, cf. Section 5), needed due to the use of trigonometric functions with a base
radius of 60, is explicitly mentioned, both in the proof and in the actual calculations for
the Moon and Saturn.

74 In case the heavenly body lies south of the equator and under the local horizon, q2
is found as the difference of the first arc and the geographical latitude. Other cases, for
instance if the heavenly body is above the horizon, are left to the reader.
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incidental horizon and the local meridian. Thus we find from the Rule
of Four that

sinGR
sinAL

=
sinRY
sinLM

or
sin q3
sin φ

=
sin δm
sin φi

.

It follows that the latitude of the incidental horizon can be found from

sin φi = sin δm · sin φ
sin q3

.

Note that the statement that, in the case of the Sun and the diagram in the
text, the latitude of the incidental horizon is southerly because its pole N
lies south of the equator is correct. This condition is in fact equivalent to
the one given earlier, namely that the latitude of the incidental horizon
is southerly when the star is west of the local meridian.

To summarize the above procedure, we find consecutively:
● δm, the distance of the star from the meridian, from

sin δm = sin(αt − α4) · cos d;
● the first auxiliary arc q1 from sin q1 = sin d/ cos δm;
● the second auxiliary arc q2 from q2 = q1 + φ;
● the third auxiliary arc q3 from q3 = 90◦ + arcsin(sin q2 · cos δm);
● and the latitude of the incidental horizon φi from

sin φi = sin δm · sin φ/ sin q3.
Two somewhat different methods for calculating the latitude of the inci-
dental horizon can be found in the Zīj of Ulugh Beg.75

Notes to the calculations in the text. For each of the planets as well as the lot7r: 14–7v: 29

of fortune, the distance from the fourth house is calculated by subtracting a
constant value for the ascension of the fourth house, namely 25;8,47◦, from the
ascension of transit. Calculating with al-Ṭūsī’s value for the obliquity of the
ecliptic, 23;30◦, we find that this value stems from an ecliptic longitude of the
fourth house close to 27;6,25◦ Aries. Consequently, the underlying longitude
of the tenth house is close to 27;6,25◦ Libra, which differs by only a second
from the result of AbūMa↪shar’s method for correcting the ascendant and upper
midheaven (see Section 14).

For the Sun, the sine of the declination (i.e., the distance from the equator)
is mentioned, whereas the sine of its complement, 0;57,46,10, is needed for the
calculation. The given ‘sine of the first arc’ is in fact the sine of the comple-
ment of δm, but for all other planets the first arc is correctly taken equal to YT.

75 See Section IV.1.2 in the Zīj of Ulugh Beg (Sédillot, Prolégomènes publiés,
pp. 438–440, for the Persian text and Sédillot, Prolégomènes traduction, pp. 205–208,
for a French translation).
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For the Moon, the sine of the distance from the meridian was found by multi-
plying the given sine of the distance from the cardine by the value 0;56,54,15
instead of the correct value 0;56,54,25 for the cosine of the distance from the
equator. For Saturn, the second arc should be 75;10,16◦ rather than 75;11,1◦,
since the arcsine of the correctly computed quotient 0;31,3,21 is 31;11,1◦. For
Jupiter, the distance from the equator should have been 19;55,45◦, but the cal-
culations were made for the value 19;15,45◦ given in the text (cf. p. 60). Be-
cause Venus lies between the equator and the prime vertical at the time of the
nativity, its second arc should have been obtained by subtracting the first arc
from the geographical latitude instead of adding the two. ForMercury, the sine
of the distance from the circle of initial azimuth should have been 0;48,19,18,56
(seconds and thirds interchanged); this is in better agreement with the mul-
tiplicands that constitute this product (sin q2 and cos δm) as well as with the
following sine. The lot of fortune, whose longitude is here given for the first
time, was calculated from the longitude 0;17,35◦ Capricorn for the ascendant
as 270;17,35+ 42;38,40− 81;18,43 = 231;37,32◦ (cf. Section 22), i.e., from
the value found by means of AbūMa↪shar’s namūdār. Using the given distance
from the cardine, we can compute the ascension of transit of the lot of fortune
as 229;10,56◦, which is not an accurate value for the right ascension of its lon-
gitude. The given declination, however, is clearly based on al-Ṭūsī’s value for
the obliquity of the ecliptic. Various steps have been left out: the distance of
the lot from the meridian is 22;45,41◦ and its second auxiliary arc 66;40,22◦.

20. Corrected Ascension and Corrected Degree

After having found the latitude of the incidental horizon, ↪Imād al- 8r: 1–3

munajjim Maḥmūd al-Kāshī reaches the endpoint of his series of calcu-
lations by determining the ‘corrected ascension’ (maṭāli↪-i muṣaḥḥaḥ(a))
of each heavenly body, i.e., the distance from the vernal equinox of the
point of intersection of the incidental horizon with the equator, point O
in Figure 18. This point will serve as the reference point for the calcula-
tion of planetary rays in Section 21 and also appears to have been used
as the starting point of the prorogations in the tables on fols 23v–62v of
the Horoscope (cf. Appendix E).

The corrected ascension is found as the difference or the sum of the
ascension of transit (the distance from the vernal equinoctial point of the
orthogonal projection H of the planet onto the equator, cf. Section 17)
and the ‘incidental equation of daylight’ ηi = HO (ta↪dīl al-nahār-i
ḥādith). ↪Imād states incorrectly that the incidental equation of daylight
can be found from

1
tanLM

=
sinRH
tanHO

, i.e.,
1

tan φi
=

sin d
tan ηi

,



72 BENNO VAN DALEN

and suggests that this follows from an application of the Rule of Four to
the pair of triangles △ROH and △RLM by mentioning that ‘RL (sic!)
is the maximum sign, LM is the local latitude (sic!), and RO is the
distance of the planet from the equator’. The correct formula for ηi,
which is in fact applied by ↪Imād al-munajjim in his calculations, is
sin ηi = tan φi · tan d. This follows most easily from the similarity of
the incidental equation of daylight to the ordinary equation of daylight,
the only difference being that the place of the local horizon is now taken
by the incidental horizon, so that the angle ̸ HOR between the equator
and the incidental horizon is equal to the complement of the latitude of
the incidental horizon φi.

Similar to the ordinary equation of daylight, in order to obtain the cor-
rected ascension the incidental equation of daylight must be subtracted
from the ascension of transit if the heavenly body is north of the equa-
tor, and added to it if the body is south of the equator. The corrected
degree (daraja-yi muṣaḥḥaḥ(a)) of the heavenly body can then be found
as the arc whose oblique ascension for the latitude of the incidental hori-
zon is equal to the corrected ascension. Since most Persian zījes from
the Timurid period contain oblique ascension tables only for a range of
integer northern latitudes, this implies that interpolation between values
from two different tables or even a separate calculation (if the incidental
latitude lies outside of the tabulated range) might be necessary. If the
latitude of the incidental horizon is southerly, the corrected degree can
be found from an oblique ascension table for the corresponding northern
latitude, namely by finding the inverse ascension of the corrected ascen-
sion plus or minus 180◦; the corrected degree is then the ecliptic degree
180◦ removed from the result.
Notes to the calculations in the text. For the Moon, the product of the two8r: 4–8v: 3

tangents should have been 0;18,35,23 rather than 0;18,36,23. For Jupiter, the
distance from the equator is here taken as 18;15,45◦; the incidental equation
of daylight should have been 14;28,14◦ instead of 14;29,14◦. For the lot of
fortune, the tangent of the latitude of the incidental horizon should have been
0;32,42,41 rather than 0;31,42,41. The corrected degrees on the ecliptic are
never mentioned. Using an exact formula for the inverse oblique ascension,
we find the following values: Sun 1s 12;38,40◦, Moon 2s 17;2,29◦, Saturn
2s 14;30,27◦, Jupiter 2s 0;57,46◦, Mars 7s 1;35,52◦, Venus 11s 28;12,20◦, Mer-
cury 2s 0;47,44◦, lot of fortune 7s 21;20,50◦. That the corrected degree of the
lot of fortune is not equal to its ecliptic longitude is due to inaccuracies in the
calculation of its incidental horizon. The corrected degree for Jupiter differs
too much from its longitude, which is undoubtedly caused by the two incor-
rect values for its distance from the equator that occur in the Horoscope (cf. the
‘Notes to the calculations’ in Sections 16 and 18).
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21. Projection of the Rays

According to the doctrine of the ‘projection of the rays’ (maṭraḥ- 8v: 4–9

i shu↪ā↪ or maṭāriḥ-i ashi↪↪a), the Sun, the Moon and the planets cast
seven rays of astrological significance to particular points of the eclip-
tic, the ‘aspects’ (naẓar, pl. anẓār). By the simplest definition, these
points are 60, 90, 120, and 180 ecliptic degrees removed from the lon-
gitude of the planet. They are respectively called the ‘sextile’ (tasdīs),
‘quartile’ (tarbī↪), ‘trine’ (tathlīth), and ‘opposition’ (muqābala), where
the rays emanating from the planet in the direction of increasing lon-
gitude determine the ‘left aspects’ and those in the opposite direction
the ‘right aspects’. However, in practice most medieval astrologers pre-
ferred more complicated methods of calculating the aspects involving
right or oblique ascensions.76

↪Imād al-munajjim Maḥmūd al-Kāshī casts the planetary rays by us-
ing, for each given planet, the intersection of its incidental horizon with
the equator as the reference point, as was also done by various Maghrib-
ian astronomers and by Ulugh Beg. Thus he adds arcs of 60◦, 90◦ and
120◦ to, and subtracts them from, the corrected ascension of each planet
(see Section 20) and then takes the inverse oblique ascension for the
latitude of the incidental horizon to obtain the aspects. As a result, the
aspects cross the incidental horizon precisely two, three or four hours
before or after the planet.
Notes to the calculations in the text. I have recomputed all aspects given in 8v: 10–9r: 15

the Horoscope and found that they generally contain errors of 10 minutes at
most (the opposite aspect is given for none of the planets). The errors tend to
become larger if the arguments of the inverse oblique ascension are further away
from 0◦, which suggests the use of slightly different latitude values. Since zījes
usually contain oblique ascension tables only for integer degrees of latitude, it is
plausible that the latitudes were rounded, or that some non-trivial type of linear
interpolation was applied between tables for different latitudes. However, the
errors are not systematic enough to allow conclusions about the exact method
of calculation. Only for Mercury, the aspects in the Horoscope differ from re-
computed values by up to four degrees, again for unclear reasons.

76 Various methods for the projection of the rays are described in detail in the
following publications: Kennedy & Krikorian Preisler, ‘The Astrological Doctrine’;
Hogendijk, ‘The Mathematical Structure’; Casulleras, ‘Ibn Mu↪ādh on the Astrological
Rays’; Hogendijk, ‘Applied Mathematics’; Casulleras, ‘Ibn ↪Azzūz al-Qusanṭīnī’s Ta-
bles’; Casulleras, ‘El cálculo de aspectos’, and Casulleras & Hogendijk, ‘Progressions,
Rays and Houses’. Ulugh Beg’s treatment of the planetary rays is found in Section
IV.1.4 of his Zīj; see Sédillot, Prolégomènes publiés, pp. 441–442, for the Persian text
and Sédillot, Prolégomènes traduction, pp. 209–210, for a French translation.
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22. Astrological Lots

A separate section of the Horoscope on fol. 9r gives the positions of9r: 16–27

twenty-six astrological lots (sahm, pl. sihām) at the time of the nativity
according to the doctrine of Abū Ma↪shar al-Balkhī.77 In the table on
fols 16v–17r, which supplements the ecliptic longitudes of the houses,
the planets, the nodes and the astrological lots at the time of birth with as-
trological information, the number of lots is increased to 45. All lots are
found by means of simple arithmetical calculations from the longitudes
of the Sun, Moon, and planets, and in each case the result is reckoned
from the longitude of the ascendant. For many of the lots the calculation
differs slightly depending on whether the time of the nativity is during
the day or during the night. For example, during the day the longitude
of the lot of fortune (sahm al-sa↪āda) is found as the elongation of the
Moon from the Sun, and at night as the elongation of the Sun from the
Moon, in each case reckoned from the longitude of the ascendant. Since
Iskandar was born at nighttime, the lot of fortune at the time of his na-
tivity is found as 270;17,35 + (42;38,40 − 81;18,43) = 231;37,32◦,
i.e., 21◦38′ Scorpio. The lot of courage (sahm al-shajā↪a) is found as
the elongation of the lot of fortune from Mars during the day and as the
elongation of Mars from the lot of fortune at nighttime, again reckoned
from the longitude of the ascendant. Thus, for Iskandar’s birth we find
the lot of courage as 270;17,35+(211;25,24−231;37,32) = 250;5,27◦,
i.e., 10◦5′ Sagittarius.

23. Fixed Stars

For 83 fixed stars from Ptolemy’s star catalogue in Books VII and9v–15r

VIII of the Almagest, the Horoscope lists the ecliptic longitude, north-
ern or southern latitude, and magnitude, and then calculates the second
declination, ‘argument of the distance’, and distance from the equator
(cf. Section 16); the ascension of transit and degree of transit (Sec-
tion 17); and the equation of daylight, ascension of the rising point and
degree of the rising point (Section 18). However, not all of these quan-
tities are actually provided for each star. From the intermediate results
that are occasionally given, we can see that the calculations proceed en-
tirely according to the methods explained above for the Sun, Moon and
planets.

77 See, for instance, Burnett et al., The Abbreviation, Chapter 6 of the Arabic text,
pp. 70–79. Even more extensive collections of lots can be found in Lemay, Kitāb al-
madkhal al-kabīr, vol. III, pp. 613–660 (Qawl VIII), and Wright, The Book of Instruc-
tion, §§ 475–476, pp. 279–289. See also Haddad et al., ‘Al-Bīrunī’s Treatise’.
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I will first list some possibly significant deviations in the longitudes,
latitudes and magnitudes from the main traditions in the transmission of
Ptolemy’s star catalogue. In Band 3 of Kunitzsch, Der Sternkatalog, the
variants in all available editions of the original Greek text and the Arabic
and Latin translations are listed, supplemented with variants from var-
ious unedited manuscripts. Within the Arabic tradition, Kunitzsch dis-
tinguishes between the earlier translation of al-Ḥajjāj and that of Isḥāq
ibn Ḥunayn corrected by Thābit ibn Qurra. Furthermore, he includes the
coordinates from seven manuscripts of Naṣīr al-Dīn al-Ṭūsī’s Taḥrīr al-
Majisṭī and gives a concordance of the coordinates in three manuscripts
of al-Ṣūfī’s Ṣuwar al-kawākib al-thābita in comparison with those in the
edition of that work in Schjellerup, Description des étoiles fixes. In de-
ciding on the correct coordinates, Kunitzsch also made use of the critical
analysis by the 12th-century scholar Ibn al-Ṣalāḥ of the differences in the
star catalogues from five versions of the Almagest available to him.78

The longitudes in the Horoscope differ by precisely 18;56◦ from the
Almagest. Elwell-Sutton has summarized the various rates of preces-
sion that could have been used to arrive at the values of the Horoscope
over the period of time between the Almagest and the nativity of Iskan-
dar (or the time of compilation of the Horoscope, 1411 CE) and, since
he did not find a perfect agreement, has speculated about possible in-
termediate sources.79 The rate of precession of one degree in seventy 9v: 2

years mentioned in the introduction of the section on fixed stars in the
Horoscope is that of al-Ṭūsī in the Īlkhānī Zīj. It was also used by some
later astronomers such as Ibn al-Shāṭir and Ulugh Beg. From further
comparisons of the star names and the coordinates with, for instance,
al-Ṣūfī, al-Ṭūsī’s Taḥrīr, and al-Ṭūsī’s Persian recension of the Ṣuwar
al-kawākib al-thābita it may be possible to determine the precise source
that was used for the information on the fixed stars in the Horoscope of
Iskandar Sultan.

Deviations in the coordinates of the fixed stars in the Horoscope from
those in the Almagest traditions with a longitude correction for preces-
sion of +18;56◦ are the following:
Butting One (al-nāṭiḥ, Aries #1e): Except for one manuscript, the Greek 10r: 13–16

sources contain the less accurate value 10;30◦ for the latitude of this star in-
stead of 10;0◦ as found in the Horoscope (in the text the number of minutes is
crossed out, but in the table on fol. 17v the zero minutes are unambiguous).

78 This work was edited, translated into German and commented upon in Kunitzsch,
Zur Kritik der Koordinatenüberlieferung.

79 See Elwell-Sutton, ‘A Royal Tīmūrid Nativity Book’, pp. 126–127.
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Knee of the Enthroned Woman (rukba dhāt al-kursī , Cassiopeia #5): The lon-10r: 25–27

gitude differs from the main Greek and Arabic traditions of the Almagest
by 18;36◦ instead of 18;56◦, but it is in agreement with two manuscripts of
al-Ḥajjāj’s translation and the Latin tradition.

Head of the Tyrant (raʾs al-jabbār, Orion #1): The Greek tradition has latitudes11r: 11–15

−13;30◦ and −16;30◦ for this star instead of the common Arabic −13;50◦.
Some manuscripts of al-Ḥajjāj’s translation and the Latin tradition have the
Arabic scribal mistake −18;50◦ for −13;50◦.

Head of the Foremost Twin (raʾs al-tawʾam al-muqaddam, Gemini #1): Most11v: 11–14

of the Greek sources give the latitude as 9;30◦ instead of 9;40◦.
Manger (al-miʿlaf , Cancer #1): Most of the Greek sources give the latitude as11v: 22–27

0;20◦ instead of 0;40◦.
Brighter of the Two Calves (anwar al-farqadayn, Ursa Minor #6): Some of the12r: 3–4

Greek manuscripts give the longitude as 17;30◦ Cancer, but all other sources
have 17;10◦ Cancer, which differs by precisely 18;56◦ from the longitude in
the Horoscope.

Further One of the Two Calves (al-tālī min al-farqadayn, Ursa Minor #7): This12r: 22–25

star is of the third magnitude according to the Horoscope and the Ṣuwar al-
kawākib al-thābita by al-Ṣūfī, but of the second magnitude in the Almagest
traditions. Two manuscripts of al-Ḥajjāj’s translation give the latitude as
74;30◦.

Lone Star in the Serpent (fard al-shujāʿ, Hydra #12): In the Almagest traditions12r: 26–27

this star is of the second magnitude instead of the sixth.
Forehead of the Scorpion (jabhat al-ʿaqrab, Scorpius #6): In the Almagest13v: 8–11

traditions this star is of the fourth magnitude instead of the third.
Leg of the Centaur (rijl Qanṭūris (sic), Centaurus #35): Most of the Greek13v: 11–14

manuscripts and the Latin translation from the Greek made at Sicily have
latitude −44;10◦ instead of −41;10◦ (scribal confusion of A and Δ).

Head of the Dragon (raʾs al-tinnīn, Draco #5): In the Almagest tradition this14r: 1–4

star is of the third magnitude instead of the first.
Point of the Arrow (zujj al-nushshā[ba]80, Sagittarius #1): Some Greek manu-14r: 9–12

scripts and a manuscript of the Arabic translation by Isḥāq ibn Ḥunayn give
the latitude as −6;30◦ instead of −6;20◦.
80 This star is indicated as zujj al-nshā in the manuscript of the Horoscope. In both

surviving Arabic translations of the Almagest its Greek name was translated as naṣl al-
sahm (Kunitzsch, Der Sternkatalog, pp. 250–251). The name zujj al-sahm is found in
al-Battāni’s Sābiʾ Zīj and in Kūshyār b. Labbān’s Jāmiʿ Zīj, which suggests that the use
of the word zujj for ‘arrowhead’ stems from the early Almagest translation made for
the caliph al-Maʾmūn, which is now lost (cf. Kunitzsch, Der Almagest, p. 294, no. 393,
and Kunitzsch, Zur Kritik der Koordinatenüberlieferung, Anhang II, pp. 97–108). The
form in the Horoscope is most probably a scribal mistake for zujj al-nushshāba. Sonja
Brentjes kindly verified in her large collection of manuscript copies of al-Ṣūfī’s Ṣuwar
al-kawākib al-thābita that this name only appears in Paris, Bibliothèque nationale de
France, arabe 5036 (and hence in the Hyderabad edition of al-Ṣūfī’s work).
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Beak of the Fowl (minqār al-dajāja, Cygnus #1): SomeGreekmanuscripts give 14v: 1–4

the latitude as 49;0◦ instead of 49;20◦.
Raised Part of the Kid’s Tail (shawla dhanab al-jadī , Capricornus #28): The 14v: 9–12

complete Almagest tradition except one manuscript of al-Ḥajjāj’s translation
give the latitude as northerly instead of southerly.

Mouth of the Horse (fam al-faras, Pegasus #17): Various Greek manuscripts as 14v: 13–16

well as the Latin translation made from the Greek have latitude 2;30◦ instead
of 22;30◦.

Mouth of the [Southern] Fish (fam al-ḥūt, Aquarius #42/Piscis Austrinus #1): 14v: 17–20

The Almagest gives the latitude as −20;20◦, but one Greek manuscript and
the Arabic and Latin traditions contain the erroneous value −23;0◦.

Knee of the Fowl (rukbat al-dajāja, Cygnus #17): Some of the Greek manu- 14v: 25–27

scripts give the latitude as 64;45◦ instead of the common 63;45◦.

Computational example. The complete calculations for the Left Leg of Orion 10v: 21–24

(β Orionis) with longitude λ = 2s 8;46◦ and latitude β = 31;30◦ south would
be as follows. Note that not all of the given intermediate steps are included in
the text of the Horoscope for each star.

First the second declination is found as 22;3,45◦ as explained in Section 16.
Since the Left Leg of Orion lies south of the equator and its projection onto
the ecliptic north of it, the ‘argument of the distance’ is obtained by subtracting
the second declination from the latitude, the result being 9;26,15◦. Now the
distance from the equator is found to be equal to 9;20,16◦ in southern direction
(see again Section 16). The ascension of transit is calculated to be 71;46◦ as
explained in Section 17. The degree of transit is then calculated by taking the
inverse right ascension of the ascension of transit, yielding 2s 13;11◦.

The tangent of the distance from the equator is found to an accuracy of two
sexagesimal digits as 9;52. It is multiplied by the tangent of the latitude of
Uzgand, 57;56, and the product divided by 60, namely 9;31,36,32, is the sine
of the equation of daylight (cf. Section 18). By finding the arc corresponding
to this value by means of linear interpolation in the sine table, namely between
the values sin 9◦ = 9;23,10 and sin 10◦ = 10;25,8, the equation of daylight is
obtained as 9;8,11◦. Since the star lies south of the equator, the ascension of
the rising point is now found as the sum of the ascension of transit and the
equation of daylight (cf. Section 18), the result being 80;54◦. By finding the
inverse oblique ascension for the latitude of Uzgand from the obtained value we
calculate the degree of the rising point to be 3s 13;40◦. The ascension of setting,
which is not given in the text, is 242;38◦, and the degree of setting 1s 17;45◦.
Notes to the calculations in the text. The calculations are generally accurate
although incidentally small computational errors and reading mistakes appear
to have been made by the author of the Horoscope. In many cases these errors
propagate through the following steps of the calculations, so that they cannot
be due to a careless copyist. It can be verified that the value for the tangent of
the latitude of Uzgand used for the determination of the equation of daylight
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for all stars is equal to 57;56 (a more precise value for the latitude of 44◦ is
57;56,28,46,31, whereas we have seen on p. 66 that the value 57;56,29 was
used for the calculation of the equation of daylight for three of the five planets).
Also the tangent of the distance from the equator, which must be multiplied by
the tangent of the latitude, was calculated to two places only and sometimes
contains errors of 3 or 4 in the final digit. The product of these two tangents
needs to be ‘lowered’ (i.e., divided by 60) in order to obtain the sine of the
equation of daylight; this lowering is never explicitly mentioned in the text. In
the translation as well as in the notes below I consistently refer to the lowered
product and give the sine of the equation of daylight to base 60. The calculation
of the arcsine of the product, which produces the equation of daylight, is usually
given to seconds, i.e., more precise than the accuracy of the tangents allows.
Small errors are often made in taking the inverse oblique ascension of the
ascension of the rising point in order to obtain the degree of the rising point.
Here the text values are in many cases up to ten minutes too large, possibly
because of the use of (linear) interpolation in the oblique ascension table.

Detailed corrections:
Wing of the Horse (janāḥ al-faras): The second declination should be 0;28,42◦,9v: 14–17

the argument of the distance 12;58,42◦, and the distance from the equator
11;53,9◦. However, these relatively small errors do not have any influence
on the calculation of the ascension of transit and the equation of daylight.

End of the River (ākhir al-nahr): This star is south of the ecliptic instead of9v: 21–23

north. If its latitude were north, the star would indeed be circumpolar, but
with the southern latitude its equation of daylight becomes 57;55,50◦, the as-
cension of the rising point 99;32◦, and the degree of the rising point 3s 28;34◦.

Flank of the Chained Woman (janb al-musalsala): The ascension of transit9v: 24–27

should be 9;41◦, but the ascension of the rising point is in agreement with
the incorrect ascension of transit. The sine of the equation of daylight appears
to have been calculated as the product of the values 39;3 for the tangent of
the distance from the equator (text: 39;0) and 57;56 for the tangent of the
latitude (as usual), since only for these values is the arcsine of the lowered
product, 37;42,18, equal to 38;56◦ when rounded to minutes.

Foremost of the Two Signs (muqaddam al-sharṭayn): The lowered product of10r: 1–4

the two tangents should be 17;24,44, whereas the sine of the given equation
of daylight is 15;27,2. The correct product would have yielded: equation
of daylight 16;52,46◦, ascension of the rising point 4;3◦, and degree of the
rising point 7;36◦.

Knee of the Enthroned Woman (rukba dhāt al-kursī): The degree of transit10r: 25–27

should be 0s 13◦.
Wrist of the Pleiades (miʿṣam al-thurayyā): The degree of transit and the tan-10v: 1–4

gent of the distance from the equator seem to have been copied from the
second-next entry for the Middle of the Pleiades. The table on fol. 17v gives
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the correct ascension of transit, 24;12◦, but the following degree of transit,
1s 20◦, was calculated from the incorrect value in the text. Since the distance
of this star from the equator can be calculated as 54;19◦, the tangent of that
distance should be close to 83;32, which indeed makes the star circumpolar.

Head of the Demon (raʾs al-ghūl): This is one of a number of cases where 10v: 5–8

the underlying tangent of the distance from the equator can be derived from
the given sine of the equation of daylight, since we have 49;7 · 57;56/60 =
47;25,29,32. The correct value of the tangent is 49;9. The degree of the
rising point is accurately calculated to minutes from the given ascension of
rising of 345;53◦ as 11s 4;11◦ (rather than the text’s 11s 3;34◦).

Cepheus (fīqāwus): The degree of transit is 11s 19;31◦. 10v: 12–14

Eye of the Bull (ʿayn al-thawr): The arcsine of the given lowered product of 10v: 16–20

the tangent of the distance from the equator and the tangent of the latitude is
in fact 15;28,41◦ (scribal mistake), but the ascension of the rising point was
calculated with the equation of daylight given in the text, 15;23,41◦.

[Left] Leg of Orion (rijl al-jawzāʾ): The calculated sine of the equation of day- 10v: 21–24

light is completely wrong and should be close to 9;31,39. The equation of
daylight, however, seems to have been calculated as the arcsine of 0;8,30,54.
The value for the equation of daylight given in the text was used for calcu-
lating the ascension of the rising point. Correct values would have been:
equation of daylight 9;8,12◦, ascension of the rising point 80;54◦, degree of
the rising point 3s 13;40◦.

Forepart of the Belt (muqaddam al-mintaqa): The missing degree of transit 11r: 4–7

should be 2s 16;49◦.
Head of the Tyrant (raʾs al-jabbār): The product of the given tangent of the 11r: 11–15

distance from the equator (9;29,0) and the tangent of the latitude of Uzgand
(57;56), divided by 60, should be 9;9,24 instead of 9;8,24 (computational
error?).

Hindpart of the Belt (muʾakhkhar al-mintaqa): The equation of daylight is com- 11r: 19–23

pletely wrong; it may have been found as the arcsine of 2;13,11 (reading
mistake for the correct lowered product 2;43,11 given in the text?). Cor-
rect values are: equation of daylight 2;35,51◦, ascension of the rising point
80;59◦, degree of the rising point 3s 13;44◦.

Little Goat (judayy): Accurate values for the ascension of transit and the degree 11r: 23–25

of transit are 1;29◦ and 1;37◦ respectively.
Shoulder of the Rein-Holder (mankib dhī al-ʿinān): The sine of the equation 11v: 1–4

of daylight should be close to 54;23,35, and hence the equation of daylight
to 65;1,59◦, the ascension of rising to 14;20◦, and the degree of rising to
0s 26;11◦.

Southern (Yemeni) Dog Star (Shiʿrā al-yamāniyya): The product of the two tan- 11v: 7–10

gents, divided by 60, should have been 16;22,56 instead of 16;17,56 (com-
putational mistake?). The correct equation of daylight is 15;50,46◦, the as-
cension of rising 111;10◦, and the degree of rising 4s 7;31◦.
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Head of the Foremost Twin (raʾs al-tawʾam al-muqaddam): This star is not11v: 11–14

circumpolar. Its equation of daylight is 38;3,41◦, the ascension of rising
66;19,36◦, and the degree of rising 3s 1;3◦.

Back of the Greater Bear (ẓahr dubb al-akbar): The ascension of transit should12r: 5–6

be 155;2◦ instead of 115;2◦ (scribal error), but the degree of transit was
calculated from the incorrect ascension (its correct value would be 4s 23◦).

Shoulder of the Lion (mankib al-asad): The ascension of transit should be13r: 1–4

146;26◦ instead of 147;26◦ (scribal mistake), but the incorrect value in the
text was used for the calculation of the rising point. The degree of transit
for the text value of the ascension is 4s 25;9◦. Also the sine of the equation
of daylight is incorrect; the tangent of the distance from the equator should
be 24;54 instead of 24;15 (scribal error?), the lowered product of the two
tangents 24;2,32, the equation of daylight 23;37,20◦, the ascension of the
rising point 122;49◦, and the degree of the rising point 4s 16;23◦.

Back of the Lion (ẓahr al-asad): This star does in fact rise and set. Its equation12v: 8–11

of daylight is 24;17,46◦, the ascension of the rising point 136;5◦, and the
degree of the rising point 4s 26;26◦.

Braided Lock of the Lion (ṣafra [for ḍafīra] al-asad): This star does rise and12v: 19–21

set. Its equation of daylight is 40;7,16◦, the ascension of the rising point
138;19◦, and the degree of the rising point 4s 28;8◦.

Leader (al-qāʾid): The non-existing sine 74;5,25 points to the use of radius of12v: 21–24

the base circle 60 for the trigonometric functions. It is the lowered product
of the tangents 57;56 and 1,16;44.

[Right] Wing of the Raven (janāḥ al-ghurāb): The equation of daylight was13r: 1–4

calculated as the arcsine of 15;0,2 instead of 15;0,52 (reading mistake?).
Unarmed Simāk (simāk al-aʿzal): The ascension of the rising point should be13r: 5–8

201;21◦, and the degree of the rising point 6s 16;22◦.
Brightest in the Beggar’s Bowl (nayyir al-fakka): The ascension of the rising13r: 13–16

point should be 194;46◦, for which the degree of the rising point becomes
6s 11;20◦.

Neck of the Snake (ḥunq al-ḥayya): The omitted value for the equation of day-13r: 24–27

light should be 8;10,21◦.
Dancer (al-rāqiṣ): The given tangent of the distance from the equator, 87;40,13r: 27–13v: 3

is exact; it again points to the use of radius of the base circle 60 for the
trigonometric functions.

Forehead of the Scorpion (jabhat al-ʿaqrab): The equation of daylight should13v: 8–11

be 19;0,8◦, but the following calculations were made on the basis of the value
in the text.

Head of the Kneeling One (raʾs al-jāthī): The ascension of transit should be13v: 19–22

250;55◦ instead of 255;55◦ (scribal error), but all following calculations were
made on the basis of the value in the text.
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Point of the Arrow (zuḥḥ al-nushshā[ba]): The ascension of transit would be 14r: 9–12

slightlymore accurate for the latitude−6;30 found in someGreek andArabic
sources, but the tangent of the distance from the equator would be much
worse. The omitted value for the equation of daylight is 33;21,19◦.

Eye of the Archer (ʿayn al-rāmī): The sine of the equation of daylight is given 14r: 13–15

instead of the equation itself, which should be 23;48,25◦.
Falling Vulture (al-nasr al-wāqiʿ): The equation of daylight was completely 14r: 16–19

miscalculated; it should have been 50;22,51◦. However, as in most cases,
the value in the text was used for the remainder of the calculations.

Achilles Tendon of the Archer (ʿurqūb al-rāmī): The ascension of transit should 14r: 20–24

be 278;47◦ as in the table on fol. 20r, but the degree of transit was calculated
from the incorrect value in the text.

Flying Vulture (al-nasr al-ṭāʾir): The correct degree of the rising point is 14r: 25–27

8s 19;31◦.
Beak of the Fowl (minqār al-dajāja): The correct value of the equation of 14v: 1–4

daylight calculated from the given sine is 29;44,54◦; the following ascension
of the rising point was in fact computed on the basis of an equation of daylight
of 29;45◦.

Tail of the Dolphin (dhanab al-dulfīn): The correct value of the tangent of the 14v: 5–8

distance from the equator is 10;11, but the calculator apparently misread this
as 10;51, which he used for the multiplication by the tangent of the latitude.

Raised Part of the Kid’s Tail (shawla dhanab al-jadī): The correct value of the 14v: 9–12

equation of daylight is 20;16◦ instead of 20;26◦.
Mouth of the [Southern] Fish (fam al-ḥūt): The lowered product of the two 14v: 17–20

tangents is incorrect (it should have been 39;33,20). The equation of daylight
was apparently found as the arcsine of 40;13,57 (its correct value would have
been 41;15,26◦).

Rear [of the Fowl] (al-ridf ): The missing degree of transit is 10s 3◦. The 14v: 21–24

tangent of the distance from the equator was taken to be 56;0, whereas its
accurate value is 57;1 (scribal confusion?). The latter value would have led
to an equation of daylight of 66;34,12◦, an ascension of the rising point of
239;16◦, and a degree of the rising point of 7s 15;12◦.

Northern Star in the Whale’s Tail (dhanab qīṭs shamālī): The product of the 15r: 9–12

tangent of the distance from the equator, given as 12;16, and the tangent of
the latitude, 57;56, is here presented to four sexagesimal places that are all
correct (in most cases the product is rounded to three digits). An accurate
value for the degree of the rising point is 0s 16;54◦.

Southern Star in the Whale’s Tail (dhanab qīṭs janūbī): The tangent of the 15r: 13–15

distance from the equator can here be reconstructed from the given equation
of daylight, 21;26,32◦. The sine of the equation is 21;56,2, which is very
close to the lowered product of the value for the tangent of the latitude used
for all fixed star calculations, 57;56, and 22;43 (correct value: 22;42).
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Appendix A: Chinese-Uighur Calendar

This Appendix to Section 3 supplements the conclusions concerning the2r: 25–2v: 3

Chinese-Uighur date in the Horoscope of Iskandar reached in Elwell-Sutton,
‘A Royal Tīmūrid Nativity Book’, pp. 121–123, with a mathematical analysis
based on the discussion in van Dalen et al., ‘The Chinese-Uighur Calendar’.

In Chinese calendars a day consists of twelve double-hours (Turkish chāgh,
Chinese shi時), which were further divided into eight quarters of an hour (Per-
sian transcription kih, Chinese ke 刻). The double-hours were counted by the
elements of the duodecimal animal cycle and the first double-hour started at
11 pm. A day was also divided into ten thousand ‘parts’ (Persian transcription
fing, Chinese fen分), so that each quarter of an hour equaled 104 16 fens. Since
the indications khāy (Chinese hai 亥) and ṭunghūz (Turkish tonguz, ‘pig’) de-
note the last element of the duodecimal cycle, the Chinese-Uighur time given
in the Horoscope corresponds to 1

15 fen before the end of the day, i.e., slightly
more than half a second before 11 pm. It is unclear why the time of the nativity
is not simply given as the beginning of the following Chinese day, especially
since ‘four equal hours after sunrise’ (cf. above) was in fact a little later than
11 pm. Possibly the following Chinese-Uighur day was a less auspicious one.

The day of the nativity is said to be the eighth of the sexagesimal cycle of the
Chinese-Uighur calendar, whose elements were enumerated by a combination
of those of the animal cycle and the decimal cycle of heavenly stems. The
indication sin-way (Chinese xin-wei 辛未) combines the eighth elements of
both cycles and hence indicates the eighth element of the sexagesimal cycle;
qūy (Turkish qoy, ‘sheep’) denotes the eighth element of the animal cycle. The
sexagesimal day-count, which is similar to our week, has been consistently used
in China over a period of thousands of years, and Sunday, 24 April 1384, was
in fact a day 8 of the cycle. In an independent ‘fourth cycle’, named the ‘cycle
of choices’ (dawr-i ikhtiyārāt), this day is said to correspond to the fourth of
twelve elements, pin (Chinese ping 平), which has the attribute khay (Chinese
hei黑, ‘black’) associated with corruption. Since the next element of the cycle
of choices is ‘inclined toward beneficence’, my suggestion above that the eighth
day of the sexagesimal cycle is given as the date of birth since it might be less
auspicious than the ninth day seems to be invalidated.

There follow two numbers with fractions indicating the exact position of
the time of birth in the two main defining astronomical cycles of the Chinese-
Uighur calendar, namely true lunar months and the mean solar year. The true
new Moon indicating the beginning of the current Chinese month, namely, the
fourth month dūrdinch āy (Turkish Törtünc ay), preceded the time of the na-
tivity by exactly three days and 4215 (i.e., 1,10,15) fens. Furthermore, the be-
ginning of the current solar half-month (Persian qism, Chinese qi氣, a twenty-
fourth of the mean solar year), namely the sixth half-month kūwū (Chinese guyu
穀雨, ‘grain rain’), preceded the time of the nativity by ten days and 8677 (i.e.,
2,24,37) fens. A recomputation of these two numbers from the rules given in



Commentary on the Horoscope of Iskandar Sultan 91

the Īlkhānī Zīj yields 3 days 4634 fens and 10 days 9096 fens respectively, both
419 fens larger than the values in the text. The difference might be due to an
adjustment for a longitude difference of 15;5◦ in eastern direction (since the
local time of the true newMoon and the beginning of the qi is later in a locality
further east). However, at first sight there are no plausible localities 15;5◦ east
of Maragha or 15;5◦ west of Uzgand for or from which the adjustment could
have been made. It must also be noted that no correction for geographical longi-
tudes different from Maragha is prescribed in the Īlkhānī Zīj, and that Chinese
calendars in general were devised for one particular central locality. The reason
for the subtraction of 419 fens therefore remains unclear.

Also the years in Chinese calendars are counted by the sexagesimal cycle.
In the Uighur variant three consecutive cycles of 60 years are called shāng
win, jūng win and khā win (Chinese shangyuan上元, zhongyuan中元 and xia-
yuan下元). Since the Īlkhānī Zīj makes 1264 CE the first year of a shangyuan,
Iskandar’s year of birth (1384) is in fact the first year of a xiayuan and is
hence correctly indicated by kā zhih (Chinese jia-zi 甲子, first element of the
sexagesimal cycle), kuskū (Turkish küskü, ‘rat’), or sīchqān (Turkish sıçan,
‘rat’). The years since the creation of the world are counted in wans (Chinese
wan萬, ‘ten thousand’) of ten thousand years. The indication that, in the year of
the nativity, 8863 wans and 9860 years of the current wan had been completed
is in full agreement with the Īlkhānī Zīj (and hence with the Chinese Damingli,
which had been adopted by the Mongols when they first conquered the Jin
dynasty in 1215 CE).

Appendix B: The Characteristics of the Underlying Planetary Tables
This Appendix to Section 7 discusses in detail how the characteristics of the

planetary tables used for the calculation of the Horoscope of Iskandar Sultan,
in particular in relation to the use of displacements, can be determined from the
planetary data contained in it. It furthermore shows that the tables in the Īlkhānī
Zīj have precisely these characteristics.

We may note the following peculiarities in the intermediate steps of the
computations of planetary longitudes in the Horoscope:

a) Many of the equations at the times of the nativity and of conception are
clearly larger than their regular maximum values:

1. solar equation (nativity): 3;29,58◦ (maximum normally around 2◦) 2v: 12

2. lunar equation of centre (nativity): 24;52,30◦ (maximum usually 13;8◦) 4r: 10

3. Venus equation of centre (nativity): 3;12,23◦ (maximum around 2◦) 2v: 25

4. Venus equation of anomaly (nativity): 10s 14;56,21◦ (maximum near 45◦) 2v: 27

5. Jupiter equation of centre (conception): 9;21◦ (maximum 5;15◦)81 16r: 8

81 This equation was omitted from the manuscript, but it follows directly as the dif-
ference of the given mean anomaly 2s 26;27◦and the true anomaly 2s 17;6◦.



92 BENNO VAN DALEN

6. Mars equation of centre (conception): 23;21◦ (maximum around 11;25◦)16r: 11

7. Mercury equation of centre (conception): 7;2◦ (maximum around 3;2◦)16r: 19

8. lunar equation of anomaly (conception): 12;35,1◦ (maximum usually 7;40◦)16r: 4

9. Saturn equation of anomaly (conception): 11;44◦ (maximum around 6;36◦)16r: 7

10. Jupiter equation of anomaly (conception): 22;31◦ (maximum near 11;36◦)16r: 10

11. Mercury equation of anomaly (conception): 11s 21;42◦ (maximum 23;53◦)16r: 22

b) In Ptolemaic planetary tables set up in the traditional way, as, for exam-
ple, in the Almagest, Handy Tables, and the early Islamic zījes of Yaḥyā ibn
Abī Manṣūr, al-Battānī and Ibn Yūnus, the equations need to be added to, or
subtracted from, certain quantities depending on the values of their arguments.
However, in the Horoscope of Iskandar the planetary equation of centre is al-
ways added to themean centrum and always subtracted from themean anomaly;
all other equations are always added to the appropriate mean motions.

c) The instructions for calculating the planetary latitudes prescribe an addition5r: 11, 14

of 7◦ to the ‘adjusted centrum’ (markaz-i mu↪addal) for Saturn in order to
obtain the ‘actual adjusted centrum’ (markaz-i mu↪addal-i ḥaqīqī), and a similar
addition of 12◦ to the adjusted centrum for Jupiter.

Displaced Planetary Equations
All three characteristics mentioned above clearly point to the use of so-

called ‘displaced equations’. By increasing the equations by a certain constant
positive amount, many Islamic astronomers made them additive (or, in some
cases, subtractive) for all arguments rather than additive for a certain range
of arguments and subtractive for another. Usually the amount added to the
equations was equal to the maximum equation or the next higher integer degree
of that maximum. For example, a displaced version of the equation of centre q
for Saturn, which usually has a maximum value of 6;31◦, might be defined by
7◦ + q for additive values of the equation and 7◦ − q for subtractive values.82

The introduction of displacements has various consequences for the tables
of mean motions and equations. As an example, let us consider a displacement
of the equation of centre qc for a certain planet by an amount dc > 0, and of
the equation of anomaly qa for the same planet by an amount da > 0. Normally
qc is subtracted from, or added to, the mean anomaly in order to obtain the
true anomaly. However, in the case of a displaced equation of centre a quantity
dc + qc, respectively a quantity dc − qc will be subtracted. Therefore, the mean
anomaly as found in mean motion tables to be used with this displaced equation
of centre should be larger than the actual mean anomaly by the amount dc in
order to produce the correct true anomaly. Similarly, since both the displaced
equation of centre and the displaced equation of anomaly will be added to the

82 References to more extensive discussions of displaced equations are given in foot-
note 27 on p. 23.
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mean centrum,83 the mean centrum as found in the mean motion tables should
be smaller than the actual mean centrum by the amount dc+da in order to yield
the correct true centrum when the two equations are added.

However, the mean centrum is also the argument from which the equation
of centre is found. Most conveniently, we want to be able to enter the table for
the equation of centre with the same value for the mean centrum that we have
found from the mean motion tables. Since this value is reduced by the amount
dc + da, this implies that the tabular values for the equation of centre must
be ‘shifted’ backwards by this same amount, i.e., in the table the equation of
centre for the actual mean centrum c̄ should appear next to the displaced mean
centrum c̄ − (dc + da). Since most equations are tabulated for every degree
of the argument, it is thus more practical to make the displacements equal to
integer numbers. Therefore they are mostly taken equal to the nearest integer
larger than the maximum equations.

The Displacements in the Horoscope of Iskandar
Let us now try to determine the amounts by which the tables used for the

calculation of the planetary longitudes in the Horoscope of Iskandar were dis-
placed. Firstly, as mentioned under c) above, respectively 7◦ and 12◦ must be
added to the found ‘adjusted centrum’ of Saturn and Jupiter in order to ob-
tain the ‘actual adjusted centrum’, which is needed for calculating the latitudes
of these planets. From the above discussion it now follows that these num-
bers are very probably the displacements da of the equations of anomaly (since
the equation of centre is already incorporated in the adjusted centrum, it is not
necessary to also add dc in order to obtain the actual adjusted centrum). Note
that 7◦ and 12◦ are plausible displacements for Saturn and Jupiter, because the
maximum equations of anomaly for these planets are approximately 6;36◦ and
11;36◦. Since apparently similar adjustments were not necessary for the true
centrums of Mars, Venus and Mercury, it seems that the equation of anomaly
of those planets was not displaced. However, of the five values for the equation
of anomaly for these three planets that are found in the Horoscope, the ones
for Venus and Mercury listed above are much larger than the ordinary maxi-
mum equations concerned. It can be verified that both involve the special type
of displacement that I have called ‘displacement by twelve zodiacal signs’.84
This means that a subtractive equation of anomaly q is represented as 12s − q,
so that it can always be added to the ‘adjusted centrum’ in order to obtain the

83 In some zījes the planetary equation of anomaly is added to the mean longitude
rather than to the mean centrum (the difference between the two being the longitude
of the planetary apogee) in order to obtain the true longitude directly. In such cases the
tabulated mean longitude should be smaller than the actual mean longitude by an amount
da and the tabular values of the equation of centre only need to be shifted backwards by
an amount dc, instead of by dc + da (cf. below).

84 See van Dalen, ‘The Zīj-i Nāṣirī’, p. 841.
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‘corrected centrum’ without necessitating a (further) adjustment of the mean
centrum (however, in many cases, 12 signs will need to be subtracted in order
to obtain a result between 0 and 360◦). We may assume that also the equation
of anomaly for Mars was of this type.

In trying to determine the displacements of the underlying planetary equa-
tions of centre from the values given in the Horoscope, we need to take into
account that the values for the mean centrum from which they were found were
also displaced. As usual, natural candidates for the amounts of the displace-
ment are the next larger integers to the maximum equations. Since the equa-
tions change relatively slowly in the neighbourhood of their maxima, it may
be useful to first look at planets for which the given equations of centre are
close to their maximum or, equivalently, for which the mean centrum is rel-
atively close to 90◦ or 270◦. For example, the mean centrum of Mercury at
the time of conception is given as 8s 21;9◦. For Ptolemy’s value for the eccen-16r: 19

tricity of Mercury, 3;0, the corresponding equation is +3;1◦, which differs by
almost precisely 4;0◦ from the text’s 7;2◦. Anticipating a displacement of 4◦
(i.e., the next larger integer to Mercury’s maximum equation of centre of 3;2◦),
the given mean centrum corresponds to an actual mean centrum of 8s 25;9◦,
for which Ptolemy’s equation becomes +3;2◦, differing by precisely 4◦ from
the value in the text. We conclude that the table of the equation of centre for
Mercury used in the Horoscope was displaced by 4◦.

A similar reasoning works quite well for the equation of centre for Mars
at the time of conception. Here the displaced mean centrum is 8s 19;59◦, the16r: 11

equation of centre in the text 23;21◦, and Ptolemy’s equation +11;23◦. The dif-
ference, 11;58◦, is very close to the next larger integer of Ptolemy’s maximum
equation, 11;25◦. In this case the agreement of the text value with Ptolemy’s
value for the assumed actual mean centrum of 9s 1;59◦, namely +11;19◦, is not
as good as for Mercury. However, errors of 2′ in medieval equation tables are
not uncommon. Thus we conclude that the displacement of Mars’s equation of
centre is 12◦.

For Saturn, Jupiter and Venus some trial-and-error is needed, since none
of the given equations in the text are close to their maximum. The given mean
centrums for Saturn and Jupiter can already be corrected for the displacement of
the equation of anomaly found above before sample equations are calculated.
For example, for Saturn at the time of conception we find: mean centrum in
the text 5s 13;41◦, equation in the text 6;43◦, mean centrum adjusted for the16r: 6

displacement of the equation of anomaly 5s 20;41◦, Ptolemaic equation −1;7◦
(maximum 6;31◦), difference 7;50◦. Here the displacement turns out to be 7◦
(rather than 8◦), since for 7◦ the equation for the actual mean centrum 5s 27;41◦
becomes −0;17◦, differing from the text by precisely 7◦. In a similar way we
find a displacement of 6◦ for Jupiter.

For the equation of centre for Venus we cannot simply assume the use of
Ptolemy’s value for the eccentricity, because it was drastically improved upon
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by Islamic astronomers. However, since in most zījes the maximum equa-
tion for Venus was close to 2◦, we can still determine the displacement with
reasonable certainty. For the given mean centrum at the time of the nativity,
10s 19;18,25◦, the text gives the equation of centre as 3;12,23◦. Assuming that 2v: 25

the maximum equation is precisely 2◦, a recomputation yields +1;17,13◦, dif-
fering by 1;55,10◦ from the text. Anticipating a displacement of 2◦, we note
that the recomputed equation for 10s 21;18,25◦ is 1;14,0◦, differing by 1;58,23◦
from the equation in the text. However, a similar procedure for the equation of
centre for Venus at the time of conception, namely 1;47◦, rather points to a dis-
placement of 3◦, since the recomputed equation for the mean centrum in the text
is−1;10,29◦. It thus seems that one of the two calculations in the text involves
some rather large errors.

The situation for the Moon is slightly simpler than for the planets. Since
the equation of centre is only added to the mean anomaly, and the equation
of anomaly to the mean longitude rather than to the mean centrum, the equa-
tion of centre does not need to be shifted. This implies, however, that dis-
placements by non-integer numbers of degrees, in particular by the maximum
equations, are possible. For the Moon, most Islamic astronomers likewise used
Ptolemy’s eccentricity and radius of the epicycle or slight variations of them.
For the time of the nativity, the lunar mean centrum is given in the Horoscope as
2s 27;5,16◦ and the equation of centre as 24;57,30◦, whereas Ptolemy’s equation 4r: 10

is 11;43,24◦, differing by 13;14,6◦ from the value in the text. For the time of
conception, themean centrum in the Horoscope is 9s 22;33,49◦ and the equation 4r: 22, 16r: 3

of centre 3;35,37◦; the calculated equation is −9;32,29◦, differing by 13;8,6◦
from the text. It is thus plausible that the underlying lunar equation of centre
was displaced by its maximum, 13;8◦. This also implies that the tabulated mean
anomaly is 13;8◦ smaller than the actual one.

The lunar mean anomaly at the time of the nativity is given in the Horo-
scope as 1s 13;58,22◦ and the second equation as 2;45,30◦. Since the second 4r: 10–11

equation could be either the equation of anomaly at apogee or that at perigee
(the two functions may even be combined in a single table), we need to com-
pare the text value with both possibilities. Ptolemy’s recomputed equation of
anomaly at apogee becomes−3;16,16◦ (difference from the text value 6;1,46◦),
the equation at perigee −4;49,45◦ (difference 7;35,15◦). The true anomaly at
the time of conception is given in the Horoscope as 7s 24;37,46◦ and the second 4r: 23, 16r: 4

equation as 11;57,52◦. Here Ptolemy’s recomputed equation at apogee becomes
+4;17,53◦ (difference from the text 7;39,59◦), that at perigee +6;43,15◦ (differ-
ence 5;14,37◦). As possible displacements we expect the maximum equations
(approximately 5◦ at apogee, 7;40◦ at perigee) or next higher integers (5◦, 6◦
or 8◦). Judging from the above differences between text and recomputations,
the most plausible displacement is thus 7;40◦, in which case the second equa-
tion given in the text for the time of the nativity (with an argument between 0◦
and 180◦) is an equation at perigee, whereas the second equation for the time of
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conception (with an argument between 180◦ and 360◦) is an equation at apogee
(for an explanation of this ‘phenomenon’, see below).

For the Sun, a range of values for the eccentricity is historically plausible,
and the maximum solar equation may be slightly smaller or slightly larger than
2◦. For the time of the nativity the mean centrum is given as 10s 10;34,38◦2v: 12

and the equation as 3;29,58◦. For the time of conception the mean centrum is
0s 27;48,44◦ and the solar equation 1;5,44◦. Calculating with a maximum so-16r: 2

lar equation of precisely 2◦ we find non-displaced equations equal to +1;29,5◦
and −0;54,18◦ respectively, differing by 2;0,53◦ and 2;0,2◦ from the text. It
is thus clear that the displacement will be either precisely 2◦ or equal to the
maximum equation. Since the unknown maximum equation qmax can be as-
sumed to lie in a rather narrow interval around 2◦, we can approximate the
calculated non-displaced equations quite well by +0;44,32 · qmax for the time
of the nativity and −0;27,9 · qmax for the time of conception. If the displace-
ment is exactly 2◦, we expect these to be equal to 3;29,58◦−2◦ = 1;29,58◦ and
1;5,44◦ − 2◦ = −0;54,16◦ respectively. This leads to inconsistent maximum
equations of 2;1,13◦ and 1;59,56◦. If the displacement is equal to the maximum
equation, we expect the approximating expressions for the equations to be equal
to 3;29,58◦ − qmax at the time of the nativity and 1;5,44◦ − qmax at the time of
conception. Thus we find maximum equations of approximately 2;0,31◦ and
2;0,4◦, somewhat less inconsistent than the above pair of values. Although we
can not yet decide with certainty, it is clear that the maximum solar equation
lies close to 2◦ and that the displacement is either 2◦ or equal to the maximum
equation.

We have thus found the following displacements in the planetary tables that
were used for the calculation of the longitudes in the Horoscope of Iskandar: so-
lar equation: close to 2◦; equations of centre:Moon 13;8◦, Saturn 7◦, Jupiter 6◦,
Mars 12◦, Venus 2◦ or 3◦, Mercury 4◦; equations of anomaly: Moon 7;40◦, Sat-
urn 7◦, Jupiter 12◦, Mars 12s , Venus 12s , Mercury 12s . No complete overview
of the displacements of the planetary tables in Islamic zījes is available yet,
but of around twenty important zījes that I have checked there is only one that
has the above-mentioned displacements, namely the Īlkhānī Zīj by Naṣīr al-Dīn
al-Ṭūsī. Although the same displacements of the planetary equations of centre
are already found in Kūshyār b. Labbān’s Jāmi↪ Zīj (c.1025),85 in particular the
combination of displacements 7◦ and 12◦ for the equation of anomaly of Saturn
and Jupiter and 12s for the other planets is very rare.

As far as the displacements are concerned that we could not establish with
certainty from the data in the Horoscope, in the Īlkhānī Zīj the solar equation
is displaced by its maximum, 2;0,30◦,86 and the equation of centre of Venus

85 See Van Brummelen, ‘Mathematical Methods’, pp. 268–271, and van Dalen, Ptole-
maic Tradition, pp. 408–410.

86 The displacement 2;0,30 of the solar equation occurs in most of the manuscripts of
the Īlkhānī Zīj that I have consulted, in particular in Cairo, Dār al-kutub, mīqāt fārisī 1
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by 2◦. Al-Ṭūsī’s table for the lunar equation of anomaly is of so-called ‘mixed
type’,87 which means that the equation at apogee is tabulated in one half of
the table and the equation at perigee in the other half (a property that we had
already noticed above for the two values of the lunar equation of anomaly
presented in the Horoscope). This also explains why the product of ‘difference’
and interpolation minutes can be added to the second equation in both instances
in the Horoscope, whereas for ordinary displaced equation of anomaly tables it
would have to be added in one half of the epicycle and subtracted in the other.

Appendix C: Equation of time

True time is determined directly from solar observations and is defined in
such a way that every day the Sun culminates precisely at noon. Due to the in-
clination of the ecliptic to the equator (in modern, heliocentric terms: the tilt of
the Earth axis with respect to the plane of the Earth’s motion around the Sun)
and the eccentricity of the solar orbit around the Earth (in modern terms: the
eccentricity of the Earth’s path around the Sun), the time between true noons
defined in this way is not constant. On the other hand, mean time is determined
in such a way that the time between two consecutive mean noons is always
the same (namely, 24 hours). Mean time is easier to use in calculations and is
utilised in planetary tables to facilitate the calculation of planetary mean mo-
tions. The difference between true and mean time is called the equation of time
(Arabic: taʿdīl al-ayyām wa-layālīhā) and was already tabulated by Ptolemy in
his Handy Tables. It needs to be taken into account in particular when calcu-
lating accurate lunar positions and the times and magnitudes of eclipses.88

The Īlkhānī Zīj contains tables for the corrections of solar and lunar longi-
tudes due to the equation of time in its treatise on planetary positions and a table
expressing the equation in minutes and seconds of an hour (as found in most
other zījes) in the treatise on spherical astronomy.89 Each of these tables has
degrees of the true solar longitude as its argument, and the given values of the

(fols 34v–37r); Istanbul, University Library, F 1418 (fols 130v–133r); Leiden, Univer-
siteitsbibliotheek, Or. 75 (fols 33r–35v); and Florence, Biblioteca Medicea Laurenziana,
Or. 24 (fols 30r–32v). In these manuscripts the longitude of the apogee, rather than the
mean solar centrum, was decreased by the displacement in order to yield the correct true
longitude after the addition of the solar equation and the longitude of the apogee. In at
least one other manuscript of the Īlkhānī Zīj, namely, the very early Paris, Bibliothèque
nationale de France, persan 163, which was copied by al-Ṭūsī’s son Aṣīl al-Dīn Ḥasan,
a different solar equation table is found with a displacement and a shift of precisely 3◦
(fols 27v–29r). However, the resulting solar longitudes are the same in each case.

87 cf. van Dalen, ‘The Zīj-i Nāṣirī’, pp. 842–843.
88 For extensive discussions of the equation of time and further references, see van

Dalen, ‘On Ptolemy’s Table’, and van Dalen, ‘Al-Khwārizmī’s Astronomical Tables’.
89 The tables can be found, for example, in Paris, Bibliothèque nationale de France,

persan 163, fols 29v (Sun), 36v (Moon), and 123r (time, misplaced after Treatise IV).
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equation of time must be subtracted from (the positions at) true solar time in
order to obtain (the positions at) mean solar time. Since the true solar longitude
as computed from the solar tables is generally not a whole number of degrees,
linear interpolation needs to be applied to find the equation of time from one of
the three tables. The tables are based on al-Ṭūsī’s known values 23;30◦ for the
obliquity of the ecliptic and 2;6,9 for the solar eccentricity, and on a longitude
of the solar apogee equal to 90◦.

↪Imād al-munajjim Maḥmūd al-Kāshī first applies the equation of time2v: 13

when he determines a preliminary value of the ascendant at the time of Iskan-
dar’s birth. For this he subtracts an equation of 0;0,50◦ (in agreement with al-
Ṭūsī’s solar table) from the true solar longitude at the observed time of birth
(1s 12;39,35◦) to obtain the longitude at the mean time of birth.

Next he finds the solar equation of time at mean midnight of the day of4r: 19, 16r: 2

conception as 0;0,28◦ (again in agreement with the table), but he mistak-
enly subtracts it from the true solar longitude calculated for mean midnight
(3s 27;25,13◦), rather than adding it in order to obtain the true solar longitude
at true midnight (which is equal to upper midheaven, from which he can then
easily calculate the ascendant). The error is of the order of 4 seconds of time,
so that it does not have any practical consequences.

Finally, al-Kāshī applies the equation of time implicitly when he converts4r: 21–22

the true time of conception calculated from the preliminary ascendant at birth
(1;46,23,52 hours after midnight) to mean time (13;35,10,52 hours after noon;
see p. 51). The difference of 0h11m13s is again in exact agreement with al-
Ṭūsī’s table (it is the result of linear interpolation between the values 0;11,15
for 3s 27◦and 0;11,11 for 3s 28◦).

In two calculations of lunar positions al-Kāshī gives the equation of time4r: 12

as 0;0,0◦ although the corresponding tabular values are non-zero. However, in4r: 25
both cases the positions are calculated and needed for mean time, so that no
correction is in fact necessary.

Appendix D: Correction of the Ascendant (namūdārs)

According to the namūdār of Hermes (cf. 2] in Section 14) the lunar lon-
gitude at the time of the nativity is equal to the longitude of the ascendant at
the time of conception, and the other way around. In order to find a corrected
value for the ascendant (and hence for the time of the nativity) from an initial
estimate of the time of birth, first an approximation to the time of conception
is determined by means of a formula for the duration of gestation. The mean
period of gestation is taken to be equal to exactly ten lunar cycles in longitude,
i.e., 273d5h12m.90 This mean period is corrected by the ‘equation of gestation’,
which is defined as the difference in longitude between the ascendant and the

90 Ghiyāth al-Dīn al-Kāshī and other Islamic authors also consider the possibility of
shorter and longer pregnancies; see Kennedy, ‘Treatise V’, p. 142.
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true lunar position at the estimated time of birth divided by the mean daily lunar
motion in longitude. If the Moon is below the horizon at the time of birth, the
equation must be added to the mean period in order to find the preliminary time
of conception; if it is above the horizon, it must be substracted. Thus the prelim-
inary time of Iskandar’s conception can be found as approximately 19h30m on
13 July 1383 (Maḥmūd al-Kāshī does not mention an explicit time but would
have arrived at 21h with the period of gestation given in the text).

This procedure provides a very reasonable approximation to the time of con-
ception according to the namūdār of Hermes, because the equation gives the
period of time (either before or after the nativity) that the Moon needs to reach
the longitude of the ascendant at the time of birth under the assumption that its
longitude changes at a linear rate. The amount by which the lunar longitude at
the obtained preliminary time of conception differs from the ascendant at the
time of birth is only due to the difference in equation of anomaly between the
estimated time of the nativity and the obtained preliminary time of conception
Since the maximum equation of anomaly amounts to 7;40◦, the maximum pos-
sible difference in equation of anomaly between two arbitrary points in time
is 15;20◦, somewhat larger than the daily lunar motion in longitude, so that
it would require an adjustment of the preliminary time of conception of little
more than a day. At the estimated time of birth of Iskandar the lunar equation
of anomaly was +3;57,22◦ (with displacement: 3;42,38◦), while at the time of 4r: 11

conception it was −4;55,1◦(with displacement: 12;35,1◦). The difference be- 4r: 24

tween the two equations, 8;52,23◦, corresponds to approximately 16h10m in
lunar mean motion, which implies that the lunar longitude was close to the as-
cendant at the estimated time of birth at around 3h20m on 13 July. In fact, at
this time the lunar position according to the Īlkhānī Zīj was 270;35◦, differing
by only 0;21◦ from the estimated ascendant 0;56◦ Capricorn.91

Next the author of the Horoscope of Iskandar finds the time of conception
by determining the moment when the ascendant is exactly equal to the lunar
longitude at the preliminary time of birth (see 3] in Section 13). Finally, he
makes the corrected ascendant at the time of birth equal to the lunar longitude
at the time of conception. This procedure can be seen as follows to have an
exact solution. Let a value Ab(tb) for the ascendant at an arbitrary point in time
tb be given, and let Mb(tb) be the true lunar position at this time. Let tc be a
different point in time at which the true lunar position Mc(tc) is always equal
to Ab(tb). Now let tb increase at an arbitrary rate. Since the ascendant changes
at a rate which, on the average, is 360/13;10,35 ≈ 27.3 times as large as that
of the moon, tc needs to increase at a rate approximately 27.3 times as large
as tb for Mc(tc) to stay equal to Ab(tb). At the same time, the corresponding

91 Note that it is a coincidence that in Iskandar’s case the exact time of conception
(1h35m11s; see p. 51) differs from the time when the lunar longitude is equal to the
estimated ascendant by less than two hours: since each degree of the ecliptic rises only
once during every 24 hours, it could just as well have differed by twelve hours.
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ascendant Ac(tc) increases at a rate approximately 27.3 times as large asMc(tc).
On the other hand, the lunar longitudeMb(tb) increases at a rate approximately
27.3 times as slow as Ab(tb). Overall, Ac(tc) increases at a rate approximately
27.32 ≈ 746.5 times faster than Mb(tb) and will inevitably overtake it, thus
providing an exact solution to the namūdār of Hermes.

Since the ascendant and the lunar position at the corrected time of birth will
be somewhat different from those at the originally estimated time, the criterion
of Hermes will not hold exactly at the newly found time. It can be shown as
follows that the procedure used in the Horoscope, if applied iteratively, con-
verges.92 Let A0b and M0

b be the initial values of the ascendant and the lunar
longitude at the estimated time of birth, and choose an appropriate day during
which the lunar longitude assumes the value A0b. On this day, determine the time
at which the ascendant A0c is equal toM0

b and calculate the lunar longitudeM0
c at

that time. Since A0c may differ from A0b by up to 180◦,M0
c may differ from A0b by

half the daily lunar motion, i.e., by at most around 7.5 degrees. As a result, the
corrected estimate A1b of the ascendant at the time of birth, which is taken equal
to M0

c , also differs from A0b by at most around 7.5 degrees. The corresponding
lunar longitude M1

b may then differ from M0
b by approximately a 27th of this

amount (cf. the previous paragraph), i.e., by at most 0.3 degrees. Consequently,
in the next step, A1c will differ from A0c by at most around 0.3 degrees, so thatM1

c
will differ from M0

c (and hence A2b from A1b) by at most around 0.3/27 ≈ 0.011
degrees. We conclude that this iteration converges to a solution of the namūdār
of Hermes and that, in practice, the first step is sufficient to obtain the ascendant
satisfying the criterion to an accuracy of minutes.

Not every value of the ascendant can be a solution of the namūdār of Her-
mes. Depending on the exact way in which the day of conception is defined,93
for any given day of birth there are around 27 possible values of the ascendant
that satisfy the criterion. These values are unevenly distributed over the day
with intervals that are inversely proportional to the rate of change of the ascen-
dant. They are separated by the day of conception, i.e., for all values of the lunar
longitude reached on the same day of conception, the ascendant according to
the namūdār of Hermes will be the same.

Appendix E: Prorogations (tasyīrs)
Prorogations are one of the most important means of predicting events in

a native’s life on the basis of the positions of the Sun, the Moon, the planets,
92 Ghiyāth al-Dīn al-Kāshī, the grandson of the author of the Horoscope, in fact carries

out the procedure iteratively; see Kennedy, ‘Treatise V’, pp. 140–143.
93 Ghiyāth al-Dīn al-Kāshi states that, at the calculated time of conception, the lunar

longitude should differ from the ascendant at the time of birth by less than half a day’s
travel of the moon; see Kennedy, ‘Treatise V’, p. 142. Another possibility is to make the
day of conception the 24-hour period (reckoned from noon or midnight) during which
the lunar longitude reaches the position of the ascendant at birth.
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the cusps of the houses, and the astrological lots at the time of birth. They were
called ἄφεσις in Greek, aphesis, atazir or directio in Latin, and are also referred
to as ‘progressions’ or ‘(primary) directions’ in English. A prorogation starts
with a chosen point on the heavenly sphere (the prorogator), which is called
mutaqaddim(a) in Arabic and Persian and significator in Latin. This point is
assumed to move in the opposite direction of the daily motion of the sphere at a
speed of one degree per year.94 In the course of this motion the prorogator will
reach significant configurations with other heavenly bodies or astrologically
significant points, in particular conjunctions and aspects, on the basis of which
predictions of favourable and adverse events can be made.

The haylāj (Latin: hyleg) is a special type of indicator that can be used as
a prorogator to make predictions about health and the length of life. It is taken
as the Sun, the Moon, the syzygy preceding the nativity, the lot of fortune,
or the ascendant following a complicated selection process. The death of the
individual is indicated by the prorogator coming under the influence of a so-
called ‘cutter’ (qāṭiʿ; Latin: promissor). Primary candidates for the cutter are
the malefic planets Saturn and Mars, but under certain circumstances also the
Sun and the Moon.

Once the starting point of a prorogation was fixed, a variety of mathemati-
cal methods were used to calculate the progression of the tasyīr, and hence to
determine by which indicators it would be influenced at which times.95 ↪Imād
al-munajjimMaḥmūd al-Kāshī does not explain the calculation of prorogations
in the text of theHoroscope, nor does hemake an explicit use of numerical tasyīr
arcs when he presents his predictions.96 However, on fols 23v–62v he provides
a large set of tables for prorogations for twenty possible starting points, namely
the twelve houses, the seven planets and the lot of fortune. These tables have
columns for: the solar year since Iskandar’s birth (from 1 up to 88, written out
in words); the prorogation (indicated in signs, degrees and minutes); the ruler

94 Both in primary sources and in the secondary literature also the opposite interpre-
tation is found: the prorogator is assumed to be fixed, and the celestial sphere with the
heavenly bodies in their positions at the time of birth is then rotated in the direction of
its regular daily motion in order to ‘reach’ the prorogator.

95 Themathematical methods are classified in Casulleras &Hogendijk, ‘Progressions,
Rays andHouses’. For a general study of prorogations, see Gansten,Primary Directions.
For the treatment by early Arabic authors, see Burnett et al., Al-Qabīṣī (Alcabitius),
pp. 120–129, and Yano, Kūšyār Ibn Labbān’s Introduction, chs III.20–21, pp. 216–235.
For further useful discussions of prorogations, see the article ‘Tasyīr’ by Oskar Schirmer
in The Encyclopaedia of Islam. New edition, vol. X (2000), pp. 366–368 (with two pages
with plates); Yano&Viladrich, ‘Tasyīr Computation’; Díaz-Fajardo, Tasyīr y proyección
de rayos; Gansten, ‘Balbillus’, and Hogendijk, ‘Al-Bīrūnī on the Computation’.

96 The section ‘On the prorogations, termini, periods and ascendants of [year] trans-
fers’ on fol. 23r (just preceding the tables discussed here) only mentions the importance
and the general use of prorogations for predictions. It mentions in lines 2–3 that the
prorogations are based on the incidental horizon.
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of the term (al-qāsim); basic indications (al-dalāʾil al-aṣliyya) / ‘that which the
prorogation passes’ (ānchih tasyīr bar ān gudharad); annual termini (intihāʾs,
another type of indicator, not given for the ascendant), and the corresponding
Malikī years (306 up to 393, only up to the sixth house) with the day of the
year (always 15 Urdibihisht, only for the ascendant). The table for the lot of
fortune has additional columns for fardāriyya and for the ascension of the as-
cendant of [year] transfers. The headers of the tables explicitly confirm that the
prorogations were calculated according to the incidental horizons and mention
the areas of the native’s life about which the prorogators allow predictions (e.g.,
‘health and sickness’ for the ascendant, and ‘the sultanate, pride and shame’ for
the Sun). The column with indications lists situations that may have a positive
or negative influence on the areas of the native’s life covered by the prorogator.
Examples include one of the other houses or planets, planetary conjunctions
(indicated in red), fixed stars and their degrees of transit, and astrological lots.

For each of the twenty possible prorogators the annual terminus at the time
of birth is equal to the longitude of the prorogator, and then increases by exactly
one zodiacal sign per true solar year. The additional table on fols 63r–65r gives
the termini of the ascendant for the months of the Malikī years in a twelve-year
cycle, with an increase of approximately 2;27,51◦ per month.

As we have seen, the main purpose of the chapters of the Horoscope de-
scribed in Sections 16 to 20 was to determine the point of intersection of the
equator with the incidental horizon for a given planet (point O in Figure 18 on
p. 67), which is determined by its ‘corrected ascension’, i.e., its distance from
the vernal equinox. The longitude of the intersection of the ecliptic and the
incidental horizon is called the ‘corrected degree’ and can be found from the
corrected ascension by means of an inverse look-up in the oblique ascension ta-
ble for the incidental latitude. In the tables of prorogations in the Horoscope, the
initial prorogation at the time of birth is generally equal to the corrected degree
of the heavenly body concerned. These degrees were omitted from the Horo-
scope, but the results of my own computations on p. 72 generally agree quite
well with the initial prorogations in the tables. This is particularly significant
for the Moon, since its large latitude of nearly five degrees leads to a similarly
large difference between its ecliptic longitude and the corrected degree.

We may now expect the further prorogations to have been found as the in-
verse oblique ascension for the incidental latitude of the corrected ascensions
increased by one equatorial degree for every true solar year. However, in a num-
ber of cases that I have checked, this assumption did not lead to an acceptable
agreement with the tables; rather, although also scribal and computational er-
rors appear to be present, the differences between the tables and my attempts at
recomputation were clearly systematic, and not only caused by rounding of the
latitude of the incidental horizon to an integer degree. Additional research will
therefore be necessary to learn more about the exact method of calculation of
the prorogations in the Horoscope of Iskandar Sultan.
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Appendix F: Positions at birth and conception

Positions at the time of birth and initial prorogations. True positions of the
Sun, the Moon, the lunar nodes and the planets at 4 hours after sunset (mean
local time at Uzgand) on Sunday, 24 April 1384, and the initial prorogations
for the date of Iskandar’s birth from the tables on fols 23v–62v.

longitude latitude97 prorogations
Sun 1s 12;38,45/40 +15;40,18 1s 12;21
Moon 2s 21;18,43 −4;44,52 2s 16;58
Head 5s 2;58,23/29
Tail 11s 2;58,23

Saturn 2s 15;28,35 −1; 8,48 2s 14;26
Jupiter 2s 2;27,59 −0;47,22 2s 0;15
Mars 7s 1;25,24 +0;39, 0 7s 1;31
Venus 11s 27;17,56 −0;22,25 11s 28;21
Mercury 2s 0;16,48 +1; 0,36 2s 0;46
Lot of fortune 7s 21;37,32 7s 21;53
Ascendant 9s 0;17,35 9s 0;18
2nd house 10s 6;12 10s 19;52
3rd house 11s 15;44 0s 3;24
4th house 0s 27; 6,24 0s 27; 6
5th house 1s 19;20 1s 14; 3
6th house 2s 10;14 2s 1;59
7th house 3s 0;17,35 3s 0;28
8th house 4s 6;12 4s 19;52
9th house 5s 15;44 6s 3;24

Midheaven 6s 27; 6,24 6s 27; 6
11th house 7s 19;20 7s 14; 3
12th house 8s 10;14 8s 1;59

Positions at the time of conception. True positions of the planets and the
lunar node at 1;46,23,52 hours after midnight (mean local time at Uzgand) on
13 July 1383 (according to the calculations given on fol. 4r:22–26 for theMoon
and on fol. 16r for all seven planets).

longitude
Sun 3s 27;27
Moon 9s 0; 8,22
Head 5s 18; 9,53

Saturn 2s 13;11
Jupiter 1s 21;49
Mars 2s 11;15
Venus 4s 18;37
Mercury 3s 23; 8
97 For the Sun: declination.
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Abstract

In the year 813 Hijra (1411 CE) Imād almunajjim Maḥmūd alKāshī,
member of a wellknown family of astronomers and mathematicians
whoworked for various rulers of the Timurid dynasty inmodernday Iran
and Uzbekistan, composed a deluxe horoscope for one of those rulers,
Iskandar Sultan (1384–1415). This work is extant in the manuscript Lon
don, Wellcome Library, Persian 474 and is particularly famous because
of its magnificent colour depiction of Iskandar’s birth horoscope. In the
first part of the Horoscope, alKāshī provides extensive explanations
(with occasional geometrical proofs) of the calculations that are needed
in order to make the predictions on Iskandar’s life found in the second
part of the work, and the numerical results are summarised in large sets
of tables. The main purpose of this article is to explain all calculations
given in the text and to verify the numbers occurring in the manuscript.
Since also explanations of basic concepts and ample references to the
relevant literature are provided, it may at the same time serve as an in
troduction to Islamic mathematical astronomy and astrology.
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